已知“整數(shù)對(duì)”按如下規(guī)律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,則第60個(gè)“整數(shù)對(duì)”是( )
A.(7,5) B.(5,7) C.(2,10) D.(10,1)
B
【解析】依題意,把“整數(shù)對(duì)”的和相同的分為一組,不難得知每組中每個(gè)“整數(shù)對(duì)”的和為n+1,且每組共有n個(gè)“整數(shù)對(duì)”,這樣前n組一共有個(gè)“整數(shù)對(duì)”,注意到<60<,因此第60個(gè)“整數(shù)對(duì)”處于第11組(每個(gè)“整數(shù)對(duì)”的和為12的組)的第5個(gè)位置,結(jié)合題意可知每個(gè)“整數(shù)對(duì)”的和為12的組中的各對(duì)數(shù)依次為:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60個(gè)“整數(shù)對(duì)”是(5,7),選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-4直線、平面平行的判定及性質(zhì)(解析版) 題型:解答題
如圖,正方體ABCD-A1B1C1D1中,側(cè)面對(duì)角線AB1,BC1上分別有兩點(diǎn)E,F(xiàn),且B1E=C1F.求證:EF∥平面ABCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-7數(shù)學(xué)歸納法(解析版) 題型:選擇題
用數(shù)學(xué)歸納法證明1+2+3+…+n2=,則當(dāng)n=k+1時(shí)左端應(yīng)在n=k的基礎(chǔ)上加上( )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+…+(k+1)2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-6直接證明與間接證明(解析版) 題型:解答題
已知x∈R,a=x2+,b=2-x,c=x2-x+1,試證明a,b,c至少有一個(gè)不小于1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-6直接證明與間接證明(解析版) 題型:選擇題
分析法又稱(chēng)執(zhí)果索因法,若用分析法證明:“設(shè)a>b>c,且a+b+c=0,求證 <a”索的因應(yīng)是( )
A.a(chǎn)-b>0 B.a(chǎn)-c>0
C.(a-b)(a-c)>0 D.(a-b)(a-c)<0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-5合情推理與演繹推理(解析版) 題型:填空題
觀察下列不等式:①<1;②+<;③++<;….則第n個(gè)不等式為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-4基本不等式(解析版) 題型:選擇題
已知b>0,直線(b2+1)x+ay+2=0與直線x-b2y-1=0互相垂直,則ab的最小值等于( )
A.1 B.2 C.2 D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-2一元二次不等式及其解法(解析版) 題型:選擇題
在R上定義運(yùn)算“*”:x*y=x(1-y).若不等式(x-y)*(x+y)<1對(duì)一切實(shí)數(shù)x恒成立,則實(shí)數(shù)y的取值范圍是( )
A.(-,) B.(-,)
C.(-1,1) D.(0,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-4數(shù)列求和(解析版) 題型:解答題
已知數(shù)列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N*).
(1)寫(xiě)出a2,a3的值(只寫(xiě)結(jié)果),并求出數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=+++…+,若對(duì)任意的正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式t2-2mt+>bn恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com