10.有一質(zhì)量非均勻分布的細棒,已知其線密度為ρ(x)=x3(取細棒所在的直線為x軸,細棒的一端為原點),棒長為1,試用定積分表示細棒的質(zhì)量M=$\frac{1}{4}$.

分析 利用定積分的物理意義將M利用定積分表示,根據(jù)定積分的計算,即可求得M.

解答 解:由定積分的物理意義可知:細棒的質(zhì)量M=$\int_0^1{{x^3}dx}$=$\frac{1}{4}$x4${丨}_{0}^{1}$=$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點評 本題考查定積分的物理意義,定積分的計算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知復(fù)數(shù)z=1-$\sqrt{3}$i(其中i是虛數(shù)單位)($\overline{z}$)2+az=0,則實數(shù)a=2;|z+a|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖是某高三學(xué)生七次模擬考試的物理成績的莖葉圖,則該學(xué)生物理成績的平均數(shù)和中位數(shù)分別為(  )
A.87和85B.86和85C.87和84D.86和84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知角α終邊上一點P(2m,1),且$sinα=\frac{1}{3}$.
(1)求實數(shù)m的值;
(2)求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了5次試驗,得到數(shù)據(jù)如下:
零件的個數(shù)x(個)23456
加工的時間y(小時)2.23.85.56.57.0
若由此資料知y與x呈線性關(guān)系,試求:
(1)求y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)試預(yù)測加工10個零件需要的時間.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)正六邊形ABCDEF,$\overrightarrow{AB}=\overrightarrow m,\overrightarrow{AE}=\overrightarrow n$,則$\overrightarrow{AD}$=$\overrightarrow{n}$$+\overrightarrow{m}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.$cos({2014π-\frac{π}{3}})$=( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知$sinα-cosα=\frac{1}{5}$(α是第三象限角),求sinα•cosα及sinα+cosα的值
(2)已知$cos({{{40}^o}+x})=\frac{1}{4}$,且-180°<x<-90°,求cos(140°-x)+cos2(50°-x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=x2ex的極大值為4e-2

查看答案和解析>>

同步練習(xí)冊答案