(2010•桂林二模)在等比數(shù)列{an} 中,若a1和a2是一元二次方程x2-4x+3=0的兩個(gè)根,則a5等于( 。
分析:法一:由a1和a2是一元二次方程x2-4x+3=0的兩個(gè)根,利用韋達(dá)定理求出兩個(gè)之和與兩根之積,聯(lián)立求出方程的兩個(gè)根,得出a1和a2的值,但是a1和a2的大小未知,故分兩種情況考慮,a1和a2是1和3,或3和1,利用等比數(shù)列的性質(zhì)求出公比的值,根據(jù)等比數(shù)列的通項(xiàng)公式即可求出a5的值;
法二:利用分解因式法求出已知一元二次方程的解,可得出a1和a2的值,根據(jù)a1和a2的大小未知,分兩種情況考慮,a1和a2是1和3,或3和1,利用等比數(shù)列的性質(zhì)求出公比的值,根據(jù)等比數(shù)列的通項(xiàng)公式即可求出a5的值.
解答:解:法一:∵a1和a2是一元二次方程x2-4x+3=0的兩個(gè)根,
∴a1+a2=4,a1a2=3,
∴a1=1,a2=3,或a1=3,a2=1,
∴公比q=3或
1
3

則a5=a1q4=81或
1
27
;
法二:x2-4x+3=0,
可化為:(x-1)(x-3)=0,
解得:x1=1,x2=3,
∴a1=1,a2=3,或a1=3,a2=1,
∴公比q=3或
1
3
,
則a5=a1q4=81或
1
27

故選D
點(diǎn)評(píng):此題考查了一元二次方程的解法,韋達(dá)定理,等比數(shù)列的性質(zhì),以及等比數(shù)列的通項(xiàng)公式,利用分類(lèi)討論的數(shù)學(xué)思想,由于a1和a2的大小未知,故分兩種情況考慮.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•桂林二模)已知拋物線x2=12y的準(zhǔn)線過(guò)雙曲線
x2
m2
-y2=-1
的一個(gè)焦點(diǎn),則雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•桂林二模)已知集合A={x|
x-5
x+2
<0},B={x|x>0},那么集合A∩B等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•桂林二模)已知復(fù)數(shù)z=1+i(i是虛數(shù)單位),則
2
z2
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•桂林二模)下列所給的有關(guān)命題中,說(shuō)法錯(cuò)誤的命題是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案