20.為了得到函數(shù)y=sin(2x-$\frac{π}{4}$)的圖象,只要將函數(shù)y=sin(x-$\frac{π}{4}$)上所有的點(diǎn)( 。
A.橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變
B.橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍,縱坐標(biāo)不變
C.縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,橫坐標(biāo)不變
D.縱坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍,橫坐標(biāo)不變

分析 由條件根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.

解答 解:將函數(shù)$y=sin(x-\frac{π}{4})$上所有的點(diǎn)橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍,縱坐標(biāo)不變,可得函數(shù)$y=sin(2x-\frac{π}{4})$的圖象,
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.Sn是數(shù)列{an}的前n項(xiàng)和,
(1)若an+1=an+an-1(n≥2),且a7=8,求S10;
(2)an=$\frac{1}{3}$(2n-(-1)n),bn=anan+1,bn-Sn•h>0對(duì)任意正整數(shù)n都成立,求h的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.對(duì)有關(guān)數(shù)據(jù)的分析可知,每一立方米混凝土的水泥用量x(單位:kg)與28天后混凝土的抗壓度y(單位:kg/cm2)之間具有線性相關(guān)關(guān)系,其線性回歸方程為$\stackrel{∧}{y}$=0.30x+9.7.根據(jù)建設(shè)項(xiàng)目的需要,28天后混凝土的抗壓度不得低于90.7kg/cm2,每立方米混凝土的水泥用量最少應(yīng)為270kg.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖是一個(gè)幾何體的三視圖,其中正視圖和側(cè)視圖都是一個(gè)兩底長(zhǎng)分別為2和4,腰長(zhǎng)為4的等腰梯形,則該幾何體的側(cè)面積是( 。
A.B.12πC.18πD.24π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.化簡(jiǎn):$cos(\frac{5π}{2}-α)$=( 。
A.sinαB.-sinαC.cosαD.-cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,則連接該正方體每個(gè)面的中心構(gòu)成的幾何體的體積是$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)f(x)=$\frac{\sqrt{x}}{x-1}$的定義域是( 。
A.[0,+∞)B.[0,1)∪(1,+∞)C.(0,1)D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖是一個(gè)空間幾何體的三視圖,則該幾何體的全面積為(  )
A.12B.16C.$\frac{{4\sqrt{3}}}{3}$+4D.4$\sqrt{3}$+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x-1)=f(x+1),且當(dāng)x∈[0,1]時(shí),f(x)=1-3x,若在區(qū)間[-6,6]內(nèi)關(guān)于x的方程f(x)-loga(x+3)=0(0<a<1)恰有5個(gè)不同的實(shí)數(shù)根,則a的取值范圍是( 。
A.$(\frac{{\sqrt{6}}}{6},\frac{1}{2})$B.$(\frac{{\sqrt{6}}}{6},1)$C.$(\frac{1}{2},1)$D.$(\frac{1}{2},+∞)$

查看答案和解析>>

同步練習(xí)冊(cè)答案