為等差數(shù)列,若,則使前項(xiàng)的最大自然數(shù)              
解:設(shè)等差數(shù)列的公差為d, ∵a2011×a2012<0, ∴(a1+2010d)(a1+2011d)<0
若d>0,∵首項(xiàng)a1>0,∴(a1+2010d)(a1+2011d)>0,不滿足∴d<0,即a2011>a2012
∴a2011>0,a2012<0          ∵a2011+a2012>0,  ∴a1+a4022=a2011+a2012>0
∴S4022=2011•(a1+a4022)>0    ∵a1+a4023=2•a2012<0    ∴S4023=4021•a2012<0
∴Sn>0時(shí),n最大值為4022
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列滿足:
(I)證明:數(shù)列是單調(diào)遞減數(shù)列的充分必要條件是
(II)求的取值范圍,使數(shù)列是單調(diào)遞增數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某企業(yè)去年的純利潤(rùn)為500萬元,因設(shè)備老化等原因,企業(yè)的生產(chǎn)能力將逐年下降,若不進(jìn)行技術(shù)改造,預(yù)測(cè)今年起每年比上一年純利潤(rùn)減少20萬元.今年初該企業(yè)一次性投入資金600萬元進(jìn)行技術(shù)改造,預(yù)測(cè)在未扣除技術(shù)改造資金的情況下,第年(今年為第一年)的利潤(rùn)為萬元(為正整數(shù));設(shè)從今年起的前年,若該企業(yè)不進(jìn)行技術(shù)改造的累計(jì)純利潤(rùn)為萬元,進(jìn)行技術(shù)改造后的累計(jì)純利潤(rùn)為萬元(需扣除技術(shù)改造資金).
(1)求的表達(dá)式;
(2)依上述預(yù)測(cè),從今年起該企業(yè)至少經(jīng)過多少年,進(jìn)行技術(shù)改造后的累計(jì)純利潤(rùn)超過不進(jìn)行技術(shù)改造的累計(jì)純利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)等差數(shù)列{an}中,公差d≠0,已知數(shù)列是等比數(shù)列,其中k1=1,k2=7,k3=25.
(1)求數(shù)列{kn}的通項(xiàng);
(2)若a1=9,設(shè)bn= +,Sn=b12+b22+b32+…+ bn2, Tn= + + +…+,試判斷數(shù)列{Sn+Tn}前100項(xiàng)中有多少項(xiàng)是能被4整除的整數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

記等差數(shù)列的前n項(xiàng)和為,且公差,則當(dāng)取最大值時(shí), __________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,數(shù)列是首項(xiàng)為a,公比也為a的等比數(shù)列,令,求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

隨機(jī)變量的分布列如右圖:其中成等差數(shù)列,若,則的值是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)公差不為的等差數(shù)列的前項(xiàng)和為,且,則下列數(shù)列不是等比數(shù)列的是(     )
A.、、B.、、
C.、D.、、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列中,,則數(shù)列的前項(xiàng)和等于(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案