9.已知命題p:x2-x≥6,命題q:|x-2|≤3;若p∧q與?q同時為假命題,求實(shí)數(shù)x的取值范圍.

分析 分別求出關(guān)于p,q的不等式的解集,判斷出p,q的真假,從而求出x的范圍即可.

解答 解:∵x2-x≥6,∴x≥3或x≤-2,
∴p:(-∞,-2]∪[3,+∞);
∵|x-2|≤3,∴-1≤x≤5,
∴q:[-1,5];
若p∧q與¬q同時為假命題,
則p假q真,
∴$\left\{\begin{array}{l}{-2<x<3}\\{-1≤x≤5}\end{array}\right.$,
解得:-1≤x<3.

點(diǎn)評 本題考查了復(fù)合命題的判斷,考查解不等式問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ax-lnx有極小值1+ln2
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)設(shè)g(x)=3x-3lnx-1-f(x),討論g(x)單調(diào)性;
(Ⅲ)若0<x1<x2,求證:$\frac{{x}_{1}-{x}_{2}}{ln{x}_{1}-ln{x}_{2}}$<2x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,⊙O中,弦AD∥BC,DA=DC,∠BCO=15°,則∠AOC等于( 。
A.120°B.130°C.140°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知不等式x2-2x+5-2a≥0.
(1)若不等式對于任意實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍;
(2)若存在實(shí)數(shù)a∈[4,$\sqrt{2016}}$]使得該不等式成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線的焦點(diǎn)在y軸上,并且雙曲線過點(diǎn)(3,-4$\sqrt{2}$),($\frac{9}{4}$,5),則雙曲線的標(biāo)準(zhǔn)方程為( 。
A.$\frac{y^2}{16}-\frac{x^2}{9}=1$B.$\frac{y^2}{16}-\frac{x^2}{9}=-1$C.$\frac{x^2}{16}-\frac{y^2}{9}=1$D.$\frac{x^2}{16}-\frac{y^2}{9}=-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=cos2x+3sinx的值域是( 。
A.$[{-4,\frac{17}{8}}]$B.$(-∞,-4)∪(\frac{17}{8},+∞)$C.[-4,4]D.(-∞,-4)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,∠B=$\frac{π}{2}$,AB=BC=2,P為AB邊上一動點(diǎn),PD∥BC交AC于點(diǎn)D,現(xiàn)將△PDA沿PD翻折至△PDA′,使平面PDA′⊥平面PBCD,當(dāng)棱錐A′-PBCD的體積最大時,PA的長為(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖是一名籃球運(yùn)動員在五場比賽中所得分?jǐn)?shù)的莖葉圖,則該運(yùn)動員在這五場比賽中得分的中位數(shù)為( 。
A.10B.11C.12D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足bcosA+(2c+a)cosB=0.
(1)求角B的大。
(2)若b=4,△ABC的面積為$\sqrt{3}$,求a+c的值.

查看答案和解析>>

同步練習(xí)冊答案