單個(gè)蜂巢可以近似地看作一個(gè)正六邊形圖形,如圖所示,這是一組蜂巢的圖形,設(shè)第(1)圖中有1個(gè)蜂巢,第(2)圖中有7個(gè)蜂巢,第(3)圖中有19個(gè)蜂巢,按此規(guī)律,第(5)圖中有個(gè)
61
61
蜂巢,
分析:可設(shè)蜂巢個(gè)數(shù)構(gòu)成數(shù)列{an},從a1,a2,a3,中尋找規(guī)律,從而可求得a5
解答:解:設(shè)蜂巢個(gè)數(shù)構(gòu)成數(shù)列{an},則a1=1,a2=7,a3=19,經(jīng)觀察發(fā)現(xiàn)a2=a1+6,a3=a2+12,…
∴a4=a3+18=37,a5=a4+24=61.
故答案為:61.
點(diǎn)評(píng):本題考查歸納推理,關(guān)鍵在于仔細(xì)觀察各項(xiàng)之間的關(guān)系,從中尋找規(guī)律,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖為一組蜂巢的截面圖.其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,以f(n)表示第n幅圖的蜂巢總數(shù).
(1)試給出f(4),f(5)的值,并求f(n)的表達(dá)式(不要求證明);
(2)證明:
1
f(1)
+
1
f(2)
+
1
f(3)
+…+
1
f(n)
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖為一組蜂巢的截面圖.其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,以f(n)表示第n幅圖的蜂巢總數(shù).則f(4)=
37
37
;f(n)=
3n2-3n+1
3n2-3n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖2為一組蜂巢的截面圖.其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,以f(n)表示第n幅圖的蜂巢總數(shù).則f(n)=
3n2-3n+1
3n2-3n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖為一組蜂巢的截面圖. 其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,以表示第幅圖的蜂巢總數(shù).

(1) 試給出的值,并求的表達(dá)式(不要求證明);

(2) 證明:.[來源:學(xué)_科_網(wǎng)]

查看答案和解析>>

同步練習(xí)冊(cè)答案