16.若復(fù)數(shù)z滿足(1+i)•z=3-2i(i是虛數(shù)單位),則z等于(  )
A.$\frac{-1-5i}{2}$B.$\frac{1+5i}{2}$C.$\frac{1-5i}{2}$D.$\frac{-1+5i}{2}$

分析 直接利用復(fù)數(shù)的代數(shù)形式除法運算法則化簡求解即可.

解答 解:復(fù)數(shù)z滿足(1+i)•z=3-2i,
可得:z=$\frac{3-2i}{1+i}$=$\frac{(3-2i)(1-i)}{(1+i)(1-i)}$=$\frac{1-5i}{2}$.
故選:C.

點評 本題考查復(fù)數(shù)的代數(shù)形式混合運算,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.將一個棱長為a的正方體嵌入到四個半徑為1且兩兩相切的實心小球所形成的球間空隙內(nèi),使得正方體能夠任意自由地轉(zhuǎn)動,則a的最大值為$\frac{{3\sqrt{2}-2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.為了解初三某班級的第一次中考模擬考試的數(shù)學成績情況,從該班級隨機調(diào)查了n名學生,數(shù)學成績的概率分布直方圖以及成績在100分以上的莖葉圖如圖所示.

(1)通過以上樣本數(shù)據(jù)來估計這個班級模擬考試數(shù)學的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表的);
(2)從數(shù)學成績在100分以上的學生中任選2人進行學習經(jīng)驗交流,求有且只有一人成績是105分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知直線l1:ax+y-1=0,直線l2:x-y-3=0,若直線l1的傾斜角為$\frac{π}{3}$,則a=-$\sqrt{3}$,若l1∥l2,則兩平行直線間的距離為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.一箱中放了8個形狀完全相同的小球,其中2個紅球,n(2≤n≤4)個黑球,其余的是白球,從中任意摸取2個小球,兩球顏色相同的概率是$\frac{1}{4}$.
(I)求n的值;
(Ⅱ)現(xiàn)從中不放回地任意摸取一個球,若摸到紅球或者黑球則結(jié)束摸球,用ξ表示摸球次數(shù),求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.復(fù)數(shù)z=$\frac{4i}{1+i}$(其中i是虛數(shù)單位)的共軛復(fù)數(shù)為(  )
A.2+2iB.-2-2iC.-2+2iD.2-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知A,B是球O的球面上兩點,∠AOB=60°,C為該球面上的動點,若三棱錐O-ABC體積的最大值為18$\sqrt{3}$,則球O的體積為288π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)條件{p:log2(x-1)<0;結(jié)論q:($\frac{1}{2}$)x-3>1,則p是q的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且a=bcosC-$\frac{\sqrt{3}}{3}$csinB.
(Ⅰ)求B;
(Ⅱ)若點D為邊AC的中點,AB=2,BC=1,求BD的值.

查看答案和解析>>

同步練習冊答案