(本題滿分12分)如圖:
O方程為
,點
P在圓上,點
D在
x軸上,點
M在
DP延長線上,
O交
y軸于點
N,
.且
(I)求點
M的軌跡
C的方程;
(II)設(shè)
,若過
F1的直線交(I)中曲線
C于
A、
B兩點,求
的取值范圍.
(I)設(shè)
,
……………………………3分
代入
得
…………………………………………5分
(II)①當直線
AB的斜率不存在時,顯然
; ……………………6分
②當直線
AB的斜率存在時,不妨設(shè)
AB的方程為:
不妨設(shè)
則:
…8分
……10分
……………………………………………………11分
綜上所述
的范圍是
………………………………………12分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知中心在原點,焦點在
軸上的橢圓
的離心率為
,且經(jīng)過點
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)是否存過點
(2,1)的直線
與橢圓
相交于不同的兩點
,滿足
?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
內(nèi)有圓
,如果圓的切線與橢圓交A、B兩點,且滿足
(其中
為坐標原點).
(1)求證:
為定值;
(2)若
達到最小值,求此時的橢圓方程;
(3)在滿足條件(2)的橢圓上是否存在點P,使得從P向圓所引的兩條切線互相垂直,如果存在,求出點的坐標,如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
的左焦點
,若橢圓上存在一點
,滿足以橢圓短軸為直徑的圓與線段
相切于線段
的中點
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知兩點
及橢圓
:
,過點
作斜率為
的直線
交橢圓
于
兩點,設(shè)線段
的中點為
,連結(jié)
,試問當
為何值時,直線
過橢圓
的頂點?
(Ⅲ) 過坐標原點
的直線交橢圓
:
于
、
兩點,其中
在第一象限,過
作
軸的垂線,垂足為
,連結(jié)
并延長交橢圓
于
,求證:
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
,
,點
滿足
,記點
的軌跡為
,過點
作直線
與軌跡
交于
兩點,過
作直線
的垂線
、
,垂足分別為
,記
。(1)求軌跡
的方程;
(2)設(shè)點
,求證:當
取最小值時,
的面積為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,短軸的一個端點到右焦點的距離為2,
(1)試
求橢圓
的方程;
(2)若斜率為
的直線
與橢圓
交于
、
兩點,點
為橢圓
上一點,記直線
的斜率為
,直線
的斜率為
,試問:
是否為定值?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,橢圓
的中心在坐標原點,其中一個焦點為圓
的圓心,右頂點是圓F與x軸的一個交點.已知橢圓
與直線
相交于A、B兩點.
(Ⅰ
)求
橢圓的方程;
(Ⅱ)求
面積的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若拋物線
的焦點與橢圓
的左焦點重合,則
的值為_________
查看答案和解析>>