對于數(shù)列{},若[(3n-1)]=1,則(n)=________

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x)=
log2(1-x),x≤0
f(x-1)-f(x-2),x>0

(1)計算:f(-1)、f(0)、f(1)、f(2),并求出f(n+3)與f(n),n∈N*滿足的關(guān)系式;
(2)對于數(shù)列{an},若存在正整數(shù)T,使得an+T=an,則稱數(shù)列{an}為周期數(shù)列,T為數(shù)列的周期,令an=f(n) , n∈N*,證明:{an}為周期數(shù)列,指出它的周期T,并求a2012的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于數(shù)列{λn},若存在常數(shù)M>0,對任意n∈N+,恒有|λn+1n|+|λnn-1|+…+|λ21|≤M,則稱數(shù)列{λn}為∂-數(shù)列.
求證:
(1)設Sn是數(shù)列{an}的前n項和,若{Sn}是∂-數(shù)列,則{an}也是∂-數(shù)列.
(2)若數(shù)列{an},{bn}都是∂-數(shù)列,則{anbn}也是∂-數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于數(shù)列{an},若存在確定的自然數(shù)T>0,使得對任意的自然數(shù)n∈N*,都有:an+T=an成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列.
(1)記Sn=a1+a2+a3+…+an,若{an}滿足an+2=an+1-an,且S2=1007,S3=2010,求證:數(shù)列{an}是以6為周期的周期數(shù)列,并求S2009
(2)若{an}滿足a1=p∈[0, 
1
2
)
,且an+1=-2an2+2an,試判斷{an}是否為周期數(shù)列,且說明理由;
(3)由(1)得數(shù)列{an},又設數(shù)列{bn},其中bn=an+2n+
2009
2n
,問是否存在最小的自然數(shù)n(n∈N*),使得對一切自然數(shù)m≥n,都有bm>2009?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于數(shù)列{an},若定義一種新運算:△an=an+1-an(n∈N+),則稱{△an}為數(shù)列{an}的一階差分數(shù)列;類似地,對正整數(shù)k,定義:△kan=△k-1an+1-△k-1an=△(△k-1an),則稱{△kan}為數(shù)列{an}的k階差分數(shù)列.
(1)若數(shù)列{an}的通項公式為an=5n2+3n(n∈N+),則{△an},{△2an}是什么數(shù)列?
(2)若數(shù)列{an}的首項a1=1,且滿足△2an-△an+1+an=-2n(n∈N+),設數(shù)列{an}的前n項和為Sn,求{an}的通項公式及
lim
n→∞
Sn+n-2
n•3n
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)對于數(shù)列{an},若存在常數(shù)T≥0,使得對于任意n∈N*,均有|an|≤T,則稱{an}為有界數(shù)列.以下數(shù)列{an}為有界數(shù)列的是
 
;(寫出滿足條件的所有序號)
①an=n-2②an=
1
n+2
an
an+1
=2,a1=1

(2)數(shù)列{an}為有界數(shù)列,且滿足an+1=-an2+2an,a1=t(t>0),則實數(shù)t的取值范圍為
 

查看答案和解析>>

同步練習冊答案