4.由曲線y=$\sqrt{x}$和直線x+y=2,y=-$\frac{1}{3}$x圍成的圖形的面積為$\frac{13}{6}$.

分析 由題意,畫出曲邊梯形的面積,利用定積分表示面積,然后計算.

解答 解:如圖由曲線y=$\sqrt{x}$和直線x+y=2,y=-$\frac{1}{3}$x圍成的圖形,它的面積為${∫}_{0}^{1}(\sqrt{x}+\frac{1}{3}x)dx+{∫}_{1}^{3}(2-x+\frac{1}{3}x)dx$=($\frac{2}{3}{x}^{\frac{3}{2}}+\frac{1}{6}{x}^{2}$)|${\;}_{0}^{1}$+(2x-$\frac{1}{3}{x}^{2}$)|${\;}_{1}^{3}$=$\frac{13}{6}$;
故答案為:$\frac{13}{6}$

點評 本題看錯了定積分的幾何意義;關(guān)鍵是畫出圖形,利用定積分表示曲邊梯形的面積,然后正確計算即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.給出以下三個說法:
①繪制頻率分布直方圖時,各小長方形的面積等于相應(yīng)各組的組距;
②在刻畫回歸模型的擬合效果時,相關(guān)指數(shù)R2的值越大,說明擬合的效果越好;
③對分類變量X與Y,若它們的隨機變量K2的觀測值k越大,則判斷“X與Y有關(guān)系”的把握程度越大;
④統(tǒng)計中用相關(guān)系數(shù)r來衡量兩個變量之間線性關(guān)系的強弱,則|r|的值越接近1,相關(guān)性越弱.
其中正確的說法是( 。
A.③④B.②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.平面α,β,γ兩兩垂直且交于一點O,若空間有一點P到這三個平面的距離分別是3、4、12則點P到點O的距離為13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.計算:(sin15°+cos15°)(sin15°-cos15°)=$-\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=ln(x2-x+1)-$\frac{2}{|2x-1|}$的所有零點的和為( 。
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某市統(tǒng)計局就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖如圖所示.(每個分組包括左端點,不包括右端點,如第一組表示[1 000,1 500))

(1)求居民收入在[3 000,3 500)的頻率;
(2)根據(jù)頻率分布直方圖估算出樣本數(shù)據(jù)的平均數(shù),眾數(shù),中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知一元二次函數(shù)f(x)=ax2+2x+c(a≠0)的圖象與y軸交于點(0,1),且滿足f(-4)=f(0).
(I)求該二次函數(shù)的解析式及函數(shù)的零點.
(II)已知函數(shù)在(t-1,+∞)上為增函數(shù),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)是定義在[-1,1]上的增函數(shù),若f(x-1)<f(x2-1),則x范圍是(  )
A.(1,+∞)∪(-∞,0)B.(0,1)C.$({1,\sqrt{2}}]$D.$({1,\sqrt{2}}]∪[{-\sqrt{2},0})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)x∈R,則“|x-2|<1”是“x2+x-2>0”的( 。
A.既不充分也不必要條件B.充要條件
C.充分而不必要條件D.必要而不充分條件

查看答案和解析>>

同步練習(xí)冊答案