一動(dòng)圓與圓x2+y2=1外切,而與圓x2+y2-6x+8=0內(nèi)切,則動(dòng)圓圓心的軌跡是
 
分析:設(shè)動(dòng)圓的半徑為r,由相切關(guān)系建立圓心距與r的關(guān)系,進(jìn)而得到關(guān)于圓心距的等式,結(jié)合雙曲線的定義即可解決問(wèn)題.
解答:解:設(shè)動(dòng)圓的半徑為r,動(dòng)圓圓心為P(x,y),
因?yàn)閳A與圓O:x2+y2=1外切,圓B:x2+y2-6x+8=0內(nèi)切,
則PO=r-1,PB=r+1.
∴PB-PO=2
因此點(diǎn)的軌跡是焦點(diǎn)為O、B,中心在(
3
2
,0)的雙曲線的右支.
故填:雙曲線的右支.
點(diǎn)評(píng):本題主要考查了軌跡方程.當(dāng)動(dòng)點(diǎn)的軌跡滿(mǎn)足某種曲線的定義時(shí),就可由曲線的定義直接寫(xiě)出軌跡方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2、一動(dòng)圓與圓x2+y2+6x+5=0及圓x2+y2-6x-91=0都內(nèi)切,則動(dòng)圓圓心的軌跡是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一動(dòng)圓與圓x2+y2+6x+5=0外切,同時(shí)與圓x2+y2-6x-91=0內(nèi)切,則動(dòng)圓圓心M的軌跡方程是
x2
36
+
y2
27
=1
x2
36
+
y2
27
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,一動(dòng)圓與圓x2+y2+6x+5=0外切,同時(shí)與圓x2+y2-6x-91=0內(nèi)切,求動(dòng)圓圓心M的軌跡方程,并說(shuō)明它是什么樣的曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一動(dòng)圓與圓x2+y2=1外切,而與圓x2+y2-6x+8=0內(nèi)切,那么動(dòng)圓的圓心的軌跡是(    )

A.雙曲線的一支             B.橢圓

C.拋物線                      D.圓

查看答案和解析>>

同步練習(xí)冊(cè)答案