如圖所示,PA為圓的切線,A為切點(diǎn),PBC是過點(diǎn)O的割線,PA=10,PB=5,的平分線與BC和圓分別交于點(diǎn)D和E。
(1)求證:;
(2)求AD·AE的值。
( 1)直接根據(jù)∠PAB=∠ACP以及∠P公用,得到△PAB∽△PCA,進(jìn)而求出結(jié)論;
(2)90
【解析】
試題分析:( I)直接根據(jù)∠PAB=∠ACP以及∠P公用,得到△PAB∽△PCA,進(jìn)而求出結(jié)論;
( II)先根據(jù)切割線定理得到PA2=PB?PC;結(jié)合第一問的結(jié)論以及勾股定理求出;再結(jié)合條件得到△ACE∽△ADB,進(jìn)而求出結(jié)果.
解:( I)∵PA為⊙O的切線,
∴∠PAB=∠ACP,…(1分)
又∠P公用,∴△PAB∽△PCA.…(2分)
∴.…(3分)
( II)∵PA為⊙O的切線,PBC是過點(diǎn)O的割線,
∴PA2=PB?PC.…(5分)
又∵PA=10,PB=5,∴PC=20,BC=15.…(6分)
由( I)知,,
∵BC是⊙O的直徑,
∴∠CAB=90°.
∴AC2+AB2=BC2=225,
∴ …(7分)
連接CE,則∠ABC=∠E,…(8分)
又∠CAE=∠EAB,
∴△ACE∽△ADB,
∴ …(9分)
∴.…(10分)
考點(diǎn):與圓有關(guān)的比例線段、相似三角形
點(diǎn)評(píng):本題主要考查與圓有關(guān)的比例線段、相似三角形的判定及切線性質(zhì)的應(yīng)用.解決本題第一問的關(guān)鍵在于先由切線PA得到∠PAB=∠ACP.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
PA |
PB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,AB是圓O的直徑,PA垂直于圓O所在的平面,M是圓周上異于A、B的任意一點(diǎn),AN⊥PM,點(diǎn)N為垂足,求證:AN⊥平面PBM.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:江蘇期末題 題型:解答題
如圖所示,已知圓E:x2+(y﹣1)2=4交x軸分別于A,B兩點(diǎn),交y軸的負(fù)半軸于點(diǎn)M,過點(diǎn)M作圓E的弦MN.
(1)若弦MN所在直線的斜率為2,求弦MN的長(zhǎng);
(2)若弦MN的中點(diǎn)恰好落在x軸上,求弦MN所在直線的方程;
(3)設(shè)弦MN上一點(diǎn)P(不含端點(diǎn))滿足PA,PO,PB成等比數(shù)列(其中O為坐標(biāo)原點(diǎn)),試探求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com