14.函數(shù)y=$\frac{1}{\sqrt{x-{x}^{2}}}$的最小值為2.

分析 配方法化簡(jiǎn)x-x2=-(x-$\frac{1}{2}$)2+$\frac{1}{4}$,從而確定$\frac{1}{\sqrt{x-{x}^{2}}}$≥2,從而解得.

解答 解:∵x-x2=-(x-$\frac{1}{2}$)2+$\frac{1}{4}$,
∴0<x-x2≤$\frac{1}{4}$,
∴0<$\sqrt{x-{x}^{2}}$≤$\frac{1}{2}$,
∴$\frac{1}{\sqrt{x-{x}^{2}}}$≥2,
故答案為:2.

點(diǎn)評(píng) 本題考查了整體思想與配方法的應(yīng)用及轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列命題正確的是( 。
①若m⊥α,α⊥β,則m∥β                        
②若m⊥α,α∥β,n?β,則m⊥n
③若m?α,n?β,m∥n,則α∥β                   
④若n⊥α,n⊥β,m⊥β,則m⊥α
A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n-1(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{{2}^{n}}{{2}^{2n+1}-3×{2}^{n}+1}$,且數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知集合A={1,2,3,4,5},B={1,3,5,7,9},C=A∩B,則集合C的子集的個(gè)數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知a,b,c∈R+,且ab+bc+ca=1,那么下列不等式中正確的是( 。
A.a2+b2+c2≥2B.(a+b+c)2≥3C.$\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$≥2$\sqrt{3}$D.abc(a+b+c)≥$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知數(shù)列{an}的前n項(xiàng)的和為Sn,a1=-1,a2=2,滿足Sn+1=3Sn-2Sn-1-an-1+2(n≥2),則a100=9998.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.?dāng)?shù)列{(-1)n+2}的前n項(xiàng)和為Sn,則S2015=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若數(shù)列{an}中,a1=$\frac{1}{2}$,an+1+2an=0(n∈N*),則S5=( 。
A.-$\frac{11}{2}$B.-$\frac{31}{6}$C.$\frac{11}{2}$D.$\frac{31}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在等差數(shù)列{an}中,若S12=72,則a5+a8為12.

查看答案和解析>>

同步練習(xí)冊(cè)答案