4.在等差數(shù)列{an}中,若S12=72,則a5+a8為12.

分析 直接利用等差數(shù)列的性質(zhì)求解即可.

解答 解:在等差數(shù)列{an}中,則a5+a8=a1+a12,若S12=72,
S12=$\frac{12({a}_{1}+{a}_{12})}{2}$=72.
可得a1+a12=12,即a5+a8=12.
故答案為:12.

點(diǎn)評(píng) 本題考查等差數(shù)列的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=$\frac{1}{\sqrt{x-{x}^{2}}}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)數(shù)列{an}中.若an+1=an+an+2,(n∈N*),則稱數(shù)列{an}為“凸數(shù)列“.
(1)設(shè)數(shù)列{an}為“凸數(shù)列“,若a1=1,a2=-2,試寫出該數(shù)列的前6項(xiàng),
(2)在“凸數(shù)列“{an}中,求證:an+3=-an,n∈N*;
(3)設(shè)a1=a,a2=b.若數(shù)列{an}為“凸數(shù)列“,求數(shù)列前2016項(xiàng)和,并求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=log2(x+1)的反函數(shù)為y=2x-1(x∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)y=cos(x+$\frac{4π}{3}$)的圖象向右平移φ個(gè)單位(φ>0),所得到的圖象關(guān)于y軸對(duì)稱,則φ的最小值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)g(x)=sin4x+$\sqrt{3}$cos4x-1,則下面對(duì)函數(shù)y=g(x)的敘述正確的是( 。
A.曲線y=g(x)的一個(gè)對(duì)稱中心為點(diǎn)(-$\frac{π}{12}$,0)
B.曲線y=g(x)的一個(gè)對(duì)稱軸為直線x=$\frac{kπ}{4}$+$\frac{π}{16}$(k∈Z)
C.函數(shù)y=g(x)在區(qū)間[$\frac{2π}{3}$,$\frac{3π}{4}$]內(nèi)單調(diào)遞減
D.函數(shù)y=g(x)在區(qū)間[$\frac{2π}{3}$,$\frac{3π}{4}$]內(nèi)不單調(diào)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=x2+bsinx+cosx+c,x∈[-π,π]為偶函數(shù),且f(x)的最小值為0,則f(x)值域中的最大整數(shù)為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知sinx=-$\frac{\sqrt{3}}{2}$,x∈[3π,$\frac{7π}{2}$],則x=$\frac{10π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.等比數(shù)列的第1項(xiàng)為4,最后一項(xiàng)為62.5,公比為2.5,則這數(shù)列共有4項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案