【題目】【2017屆廣西陸川縣中學(xué)高三文上學(xué)期二!恳阎瘮(shù).

I)求函數(shù)的單調(diào)區(qū)間;

II)若上恒成立,求實(shí)數(shù)的取值范圍;

III)在(II)的條件下,對任意的,求證:.

【答案】I當(dāng)時(shí),上單調(diào)遞增,無單調(diào)遞減區(qū)間,當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;II;(III)證明見解析.

【解析】

試題分析:I)利用時(shí)為單調(diào)增函數(shù),時(shí)為單調(diào)減函數(shù)這一性質(zhì)來分情況討論題中單調(diào)區(qū)間問題;II)根據(jù)函數(shù)單調(diào)性與最值,若上恒成立,則函數(shù)的最大值小于或等于零.當(dāng)時(shí),上單調(diào)遞增,,說明時(shí),不合題意舍去.當(dāng)時(shí),的最大值小于零.上恒成立,所以只能等于零.即可求得答案;III)首先將的表達(dá)式表達(dá)出來,化簡轉(zhuǎn)化為的形式,再根據(jù)(II)的結(jié)論得到,后逐步化簡,原命題得證.

試題解析:(I,

當(dāng)時(shí),恒成立,則函數(shù)上單調(diào)遞增,無單調(diào)遞減區(qū)間;

當(dāng)時(shí),由,得,由,

,此時(shí)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

II)由(I)知:當(dāng)時(shí),上遞增,,顯然不成立;

當(dāng)時(shí),,只需即可,

,則

上單調(diào)遞減,在上單調(diào)遞增.

.

恒成立,也就是恒成立,

,解得,上恒成立,則.

(III)證明:,

由(II)得上恒成立,即,當(dāng)且僅當(dāng)時(shí)取等號,

又由,所以有,即.

,

則原不等式成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校舉行物理競賽,有8名男生和12名女生報(bào)名參加,將這20名學(xué)生的成績制成莖葉圖如圖所示.成績不低于80分的學(xué)生獲得“優(yōu)秀獎(jiǎng)”,其余獲“紀(jì)念獎(jiǎng)”.

(Ⅰ)求出8名男生的平均成績和12 名女生成績的中位數(shù);

(Ⅱ)按照獲獎(jiǎng)?lì)愋停梅謱映闃拥姆椒◤倪@20名學(xué)生中抽取5人,再從選出的5人中任選3人,求恰有1人獲“優(yōu)秀獎(jiǎng)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品在天每件的銷售價(jià)格(元)與時(shí)間(天)的函數(shù)關(guān)系用如圖表示,該商品在天內(nèi)日銷售量(件)與時(shí)間(天)之間的關(guān)系如下表:

)根據(jù)提供的圖象(如圖),寫出該商品每件的銷售價(jià)格與時(shí)間的函數(shù)關(guān)系式.

)根據(jù)表提供的數(shù)據(jù),寫出日銷售量與時(shí)間的一次函數(shù)關(guān)系式.

)求該商品的日銷售金額的最大值,并指出日銷售金額最大的一天是天中的第幾天.(日銷售金額每件的銷售價(jià)格日銷售量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2014課標(biāo)全國,文12】已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在唯一的零點(diǎn)x0,且x0>0,則a的取值范圍是( ).

A.(2,+∞) B.(1,+∞)

C.(-∞,-2) D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某校高三學(xué)生的視力情況,隨機(jī)地抽查了該校1000名高三學(xué)生的視力情況,得到頻率分布直方圖,如圖,由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為,視力在4.6到5.0之間的學(xué)生數(shù) 的值分別為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017屆湖北省荊、荊、襄、宜四地七校考試聯(lián)盟高三2月聯(lián)考數(shù)學(xué)(文)】已知函數(shù)

(Ⅰ)討論函數(shù)的極值點(diǎn)的個(gè)數(shù);

(Ⅱ)若有兩個(gè)極值點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(I)求的單調(diào)區(qū)間;

(II)若對任意的,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin ωx·cos ωx cos2ωx

(ω>0),直線xx1,xx2yf(x)圖象的任意兩條對稱軸,且|x1x2|的最小值為 .

(Ⅰ)求f(x)的表達(dá)式;

(Ⅱ)將函數(shù)f(x)的圖象向右平移個(gè)單位長度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到函數(shù)yg(x)的圖象,求函數(shù)g(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)市政府“綠色出行”的號召,王老師每個(gè)工作日上下班由自駕車改為選擇乘坐地鐵或騎共享單車這兩種方式中的一種出行.根據(jù)王老師從2017年3月到2017年5月的出行情況統(tǒng)計(jì)可知,王老師每次出行乘坐地鐵的概率是0.4,騎共享單車的概率是0.6.乘坐地鐵單程所需的費(fèi)用是3元,騎共享單車單程所需的費(fèi)用是1元.記王老師在一個(gè)工作日內(nèi)上下班所花費(fèi)的總交通費(fèi)用為X元,假設(shè)王老師上下班選擇出行方式是相互獨(dú)立的.

(I)求X的分布列和數(shù)學(xué)期望;

(II)已知王老師在2017年6月的所有工作日(按22個(gè)工作日計(jì))中共花費(fèi)交通費(fèi)用110元,請判斷王老師6月份的出行規(guī)律是否發(fā)生明顯變化,并依據(jù)以下原則說明理由.

原則:設(shè)表示王老師某月每個(gè)工作日出行的平均費(fèi)用,若,則有95%的把握認(rèn)為王老師該月的出行規(guī)律與前幾個(gè)月的出行規(guī)律相比有明顯變化.(注:

查看答案和解析>>

同步練習(xí)冊答案