已知
cosθ
a
=
cos3θ
b
=
cos5θ
c
,求證:
a+c
a+b
=+
b
a
分析:利用合分比定理變形得到
a+c
a+b
表示式,再根據(jù)三角恒等變形公式變形化簡為右邊.
解答:證明:∵
cosθ
a
=
cos3θ
b
=
cos5θ
c

cosθ+cos3θ
a+b
=
cosθ+cos5θ
a+c

a+c
a+b
=
cosθ+cos5θ
cosθ+cos3θ
=
2cos3θcos2θ
2cosθcos2θ
=
cos3θ
cosθ
=
b
a

a+c
a+b
=
b
a

證畢.
點(diǎn)評:考查合分比定理以及運(yùn)用三角恒等變換公式變形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•杭州一模)已知點(diǎn)O為△ABC的外心,角A,B,C的對邊分別滿足a,b,c,
(I)若3
OA
+4
OB
+5
OC
=
0
,求cos∠BOC的值;
(II)若
CO
AB
=
BO
CA
,求
b2+c2
a2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長為4,對角線AC與BD交于點(diǎn)O,將正方形ABCD沿對角線BD折成60°的二面角,A點(diǎn)變?yōu)锳′點(diǎn).給出下列判斷:①A′C⊥BD;②A′D⊥CO;③△A′OC為正三角形;④cos∠A′DC=
3
4
;⑤A′到平面BCD的距離為
6
.其中正確判斷的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長是4,對角線AC與BD交于O,將正方形ABCD沿對角線BD折成60°的二面角,并給出下面結(jié)論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=
3
4
,則其中的真命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知向量
m
=(2a-c,b)與向量
n
=(cosB,-cosC)互相垂直.
(1)求角B的大;
(2)求函數(shù)y=2sin2C+cos(B-2C)的值域;
(3)若AB邊上的中線CO=2,動點(diǎn)P滿足
AP
=sin2θ•
AO
+cos2θ•
AC
(θ∈R)
,求(
PA
+
PB
)•
PC
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長是4,對角線AC與BD交于O.將正方形ABCD沿對角線BD折成60°的二面角,并給出下面結(jié)論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=
3
4
,則其中的真命題是( 。

查看答案和解析>>

同步練習(xí)冊答案