【題目】已知

1)若函數(shù)的單調遞減區(qū)間為,求函數(shù)的圖象在點處的切線方程;

2)若不等式恒成立,求實數(shù)的取值范圍.

【答案】1; 2.

【解析】

1)根據(jù)單調減函數(shù),求得實數(shù)的值,再根據(jù)導數(shù)的幾何意義,即可求得切線的方程;

2)分離參數(shù),得到恒成立,求出函數(shù)的最大值,即可求得的范圍.

1)由題意,函數(shù),可得

函數(shù)的單調遞減區(qū)間為,可得的解集為,

即方程的兩根分別是,

,代入,解得,即,

,所以

所以函數(shù)的圖象在點處的切線的斜率為,

所以函數(shù)的圖象在點處的切線的方程為,即.

2)因為不等式恒成立,

對于一切恒成立,

整理可得對于一切恒成立,

,則,

,即,解得(舍去),

所以當時,單調遞增,當時,單調遞減,

所以當時,取得最大值,

所以,即實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某社區(qū)名居民參加年國慶活動,他們的年齡在歲至歲之間,將年齡按、、、分組,得到的頻率分布直方圖如圖所示.

1)求的值,并求該社區(qū)參加年國慶活動的居民的平均年齡(每個分組取中間值作代表);

2)現(xiàn)從年齡在、的人員中按分層抽樣的方法抽取人,再從這人中隨機抽取人進行座談,用表示參與座談的居民的年齡在的人數(shù),求的分布列和數(shù)學期望;

3)若用樣本的頻率代替概率,用隨機抽樣的方法從該地歲至歲之間的市民中抽取名進行調查,其中有名市民的年齡在的概率為,當最大時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為,圓柱表面上的點在左視圖上的對應點為,則在此圓柱側面上,從的路徑中,最短路徑的長度為( )

A. B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用一張長為12,寬為8的鐵皮圍成圓柱形的側面,則這個圓柱的體積為_____;半徑為R的半圓形鐵皮卷成一個圓錐筒,那么這個圓錐筒的高是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,四邊形是邊長為的菱形,,交于點,平面平面,,,.

(1)求證:平面;

(2)若為等邊三角形,點的中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A、B、C的對邊分別為a、b、c,且

1)求角A;

2)若△ABC外接圓的面積為,且△ABC的面積,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】回答下列兩個問題, 并給出例子或證明.

(1)對任意正整數(shù), 在平面上是否都存在個不在同一條直線上的點, 使得任意兩點間的距離都為正整數(shù)?

(2)在平面上是否存在兩兩不同的無限點列組成的點集, 使得內所有點不在同一條直線上, 內任意兩點間的距離為正整數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中, , 平面,側面是正方形,點為棱的中點,點、分別在棱上,且,

(1)證明:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分別是橢圓的左、右焦點.

(1)若是該橢圓上的一個動點,求的最大值與最小值.

(2)是否存在過點的直線與橢圓交于不同的兩點,使得?若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案