【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機的對入院人進行了問卷調(diào)查得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計

合計

已知在全部人中隨機抽取人,抽到患心肺疾病的人的概率為.

1)請將上面的列聯(lián)表補充完整,并判斷是否有的把握認為患心肺疾病與性別有關(guān)?請說明你的理由;

2)已知在不患心肺疾病的位男性中,有位從事的是戶外作業(yè)的工作.為了指導(dǎo)市民盡可能地減少因霧霾天氣對身體的傷害,現(xiàn)從不患心肺疾病的位男性中,選出人進行問卷調(diào)查,求所選的人中至少有一位從事的是戶外作業(yè)的概率.

下面的臨界值表供參考:

(參考公式,其中

【答案】1)列聯(lián)表見解析,有的把握認為患心肺疾病與性別有關(guān),理由見解析;(2.

【解析】

1)結(jié)合題意完善列聯(lián)表,計算出的觀測值,對照臨界值表可得出結(jié)論;

2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為、,利用列舉法列舉出所有的基本事件,并確定事件“所選的人中至少有一位從事的是戶外作業(yè)”所包含的基本事件數(shù),利用古典概型的概率公式可取得所求事件的概率.

(1)由于在全部人中隨機抽取人,抽到患心肺疾病的人的概率為,所以人中患心肺疾病的人數(shù)為人,故可將列聯(lián)表補充如下:

患心肺疾病

不患心肺疾病

合計

合計

.

故有的把握認為患心肺疾病與性別有關(guān);

2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為,其余三人分別為、、.從中選取三人共有以下種情形:

、、、、、、、.

其中至少有一位從事的是戶外作業(yè)的有種情形,分別為:、、、、、、

所以所選的人中至少有一位從事的是戶外作業(yè)的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:

將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為體育迷”.

(1)根據(jù)已知條件完成下面的22列聯(lián)表,并據(jù)此資料你是否認為體育迷與性別有關(guān)?

非體育迷

體育迷

合計

10

55

合計

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的體育迷人數(shù)為X.若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X).

附:.

P(K2k)

0.05

0.01

k

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,過點的直線交拋物線兩點.

1)當時,求直線的方程;

2)若過點且垂直于直線的直線與拋物線交于兩點,記的面積分別為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省確定從2021年開始,高考采用的模式,取消文理分科,即“3”包括語文、數(shù)學(xué)、外語,為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學(xué)、地理、政治中選擇兩門,共計六門考試科目.某高中從高一年級2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進行調(diào)查.

1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);

2)學(xué)校計劃在高二上學(xué)期開設(shè)選修中的物理歷史兩個科目,為了了解學(xué)生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學(xué)生進行問卷調(diào)杳(假定每名學(xué)生在這兩個科目中必須洗擇一個科目且只能選擇一個科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請將列聯(lián)表補充完整,并判斷是否有的把握認為選擇科目與性別有關(guān)?說明你的理由;

性別

選擇物理

選擇歷史

總計

男生

50

女生

30

總計

3)在(2)的條件下,從抽取的選擇物理的學(xué)生中按分層抽樣抽取6人,再從這6名學(xué)生中抽取2人,對物理的選課意向作深入了解,求2人中至少有1名女生的概率.

附:,其中.

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當時,求滿足不等式組的取值范圍;

2)當時,不等式恒成立.的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《張丘建算經(jīng)》是中國古代的著名數(shù)學(xué)著作,該書表明:至遲于公元5世紀,中國已經(jīng)系統(tǒng)掌握等差數(shù)列的相關(guān)理論,該書上卷22題又女工善織問題今有女善織,日益功疾,初日織五尺,今一月曰織九匹三丈,問日益幾何?,大概意思是:有一個女工人善于織布,每天織布的尺數(shù)越來越多且成等差數(shù)列,第一天知5尺,30天共織九匹三丈,問每天增加的織布數(shù)目是多少寸?答案是__________.(注:當時一匹為四丈,一丈為十尺,一尺為十寸,結(jié)果四舍五入精確到寸)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標系xOy中,直線l的參數(shù)方程為t為參數(shù)),曲線的方程為.以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.

1)求直線l和曲線的極坐標方程;

2)曲線分別交直線l和曲線于點A,B,求的最大值及相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),當時,則函數(shù)上的所有零點之和為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐PABCD中,△PAB是邊長為2的等邊三角形,底面ABCD為直角梯形,ABCD,ABBC,BCCD1,PD.

1)證明:ABPD.

2)求二面角APBC的余弦值.

查看答案和解析>>

同步練習(xí)冊答案