9.已知復(fù)數(shù)z滿足$z=\frac{1+2i}{{{{(1-i)}^2}}}$,則在復(fù)平面內(nèi)復(fù)數(shù)$\overline z$對應(yīng)的點為(  )
A.$(-1,-\frac{1}{2})$B.$(1,-\frac{1}{2})$C.$(-\frac{1}{2},1)$D.$(-\frac{1}{2},-1)$

分析 先將z化為代數(shù)形式,求出即共軛復(fù)數(shù),確定出實部、虛部后,即可得出對應(yīng)點得坐標(biāo).

解答 解:$z=\frac{1+2i}{{{{(1-i)}^2}}}$=$\frac{1+2i}{-2i}$=$\frac{i-2}{2}$=-1+$\frac{1}{2}$i,
則$\overline{z}$=-1-$\frac{1}{2}$i,
則在復(fù)平面內(nèi)復(fù)數(shù)$\overline z$對應(yīng)的點為(-1,-$\frac{1}{2}$),
故選:A.

點評 本題考查復(fù)數(shù)代數(shù)形式的混合運(yùn)算,復(fù)數(shù)與復(fù)平面內(nèi)對應(yīng)點之間的關(guān)系.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)x,y滿足$\left\{\begin{array}{l}{x≥0}\\{x+y-2≤0}\\{ax-y-a≤0}\end{array}\right.$,若z=2x+y的最大值為$\frac{7}{2}$,則a的值為( 。
A.$-\frac{7}{2}$B.0C.1D.$-\frac{7}{2}$或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,直線DE切圓O于點D,直線EO交圓O于A,B兩點,DC⊥OB于點C,且DE=2BE,求證:2OC=3BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|y=ln(x-1)},B={x|-1<x<2},則(∁RA)∩B=( 。
A.(-1,1)B.(-1,2)C.(-1,1]D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)$f(x)=\frac{{1+{e^{2x}}}}{{1-{e^{2x}}}}•x$(其中e是自然對數(shù)的底數(shù))的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,已知$\overrightarrow{AB}=a$,$\overrightarrow{AC}=b$,$\overrightarrow{DC}=3\overrightarrow{BD}$,$\overrightarrow{AE}=2\overrightarrow{EC}$,則$\overrightarrow{DE}$=( 。
A.$\frac{3}{4}b-\frac{1}{3}a$B.$\frac{5}{12}a-\frac{3}{4}b$C.$\frac{3}{4}a-\frac{1}{3}b$D.$\frac{5}{12}b-\frac{3}{4}a$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.A、B為兩個非空集合,定義集合A-B={x|x∈A且x∉B},若A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},則A-B=( 。
A.{2}B.{1,2}C.{-2,1,2}D.{-2,-1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知sin2α=$\frac{1}{4}$,則${sin^2}(α+\frac{π}{4})$=( 。
A.$\frac{3}{4}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在復(fù)平面內(nèi),復(fù)數(shù)$z=\frac{2i}{1-i}$對應(yīng)的點的坐標(biāo)為( 。
A.(1,-1)B.(1,1)C.(-1,1)D.(-1,-1)

查看答案和解析>>

同步練習(xí)冊答案