(2013•河西區(qū)一模)一個口袋中裝有大小相同的2個白球和3個黑球.
(1)采取放回抽樣方式,從中摸出兩個球,求兩球恰好顏色不同的概率;
(2)采取不放回抽樣方式,從中摸出兩個球,求摸得白球的個數(shù)的分布列與期望.
分析:(1)采取放回抽樣方式,從中摸出兩個球,兩球恰好顏色不同,也就是說從5個球中摸出一球,若第一次摸到白球,則第二次摸到黑球;若第一次摸到黑球,則第二次摸到白球,由此可求概率;
(2)設(shè)摸得白球的個數(shù)為ξ,則ξ=0,1,2,求出相應(yīng)的概率,可得ξ的分布列與期望.
解答:解:(1)采取放回抽樣方式,從中摸出兩個球,兩球恰好顏色不同,也就是說從5個球中摸出一球,若第一次摸到白球,則第二次摸到黑球;若第一次摸到黑球,則第二次摸到白球.
因此它的概率P是:P=
C
1
2
C
1
5
C
1
3
C
1
5
+
C
1
3
C
1
5
C
1
2
C
1
5
=
12
25
…(4分)
(2)設(shè)摸得白球的個數(shù)為ξ,則ξ=0,1,2.P(ξ=0)=
C
2
3
C
2
5
=
3
10
;P(ξ=1)=
C
1
2
C
1
3
C
2
5
=
3
5
;P(ξ=2)=
C
2
2
C
2
5
=
1
10
;…(7分)
ξ的分布列為:
ξ 0 1 2
P
3
10
3
5
1
10
…(9分)
Eξ=0×
3
10
+1×
3
5
+2×
1
10
=
4
5
…(12分)
點評:本題考查互斥事件的概率,考查離散型隨機事件的分布列與期望,確定變量的取值,計算相應(yīng)的概率是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河西區(qū)一模)已知函數(shù)f(x)=x-xlnx,g(x)=f(x)-xf′(a),其中f′(a)表示函數(shù)f(x)在x=a處的導(dǎo)數(shù),a為正常數(shù).
(1)求g(x)的單調(diào)區(qū)間;
(2)對任意的正實數(shù)x1,x2,且x1<x2,證明:(x2-x1)f′(x2)<f(x2)-f(x1)<(x2-x1)f′(x1);
(3)對任意的n∈N*,且n≥2,證明:
1
ln2
+
1
ln3
+…+
1
lnn
1-f(n+1)
ln2•lnn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河西區(qū)一模)已知等比數(shù)列{an}中,各項都是正數(shù),且a1,
1
2
a3,2a2
成等差數(shù)列,則
a8+a9
a6+a7
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河西區(qū)一模)若f(x)=
ax2+1,x≥0
(a2-1)eax,x<0
(a≠1),在定義域(-∞,+∞)上是單調(diào)函數(shù),則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河西區(qū)一模)在極坐標系中,曲線ρ=2與cosθ+sinθ=0(0≤θ≤π)的交點的極坐標為
(2,
4
)
(2,
4
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河西區(qū)一模)雙曲線
x2
3
-y2=1
的一個焦點到它的漸近線的距離為(  )

查看答案和解析>>

同步練習冊答案