9.已知集合A={x|-5+21x-4x2<0},B={x∈Z|-3<x<6},則(∁RA)∩B的元素的個數(shù)為(  )
A.3B.4C.5D.6

分析 先分別求出集合A,B,從而求出CRA,進而求出(∁RA)∩B,由此能求出(∁RA)∩B的元素的個數(shù).

解答 解:∵集合A={x|-5+21x-4x2<0}={x|x<$\frac{1}{4}$或x>5},
B={x∈Z|-3<x<6}={-2,-1,0,1,2,3,4,5},
∴CRA={x|$\frac{1}{4}≤x≤5$},
∴(∁RA)∩B={1,2,3,4,5},
∴(∁RA)∩B的元素的個數(shù)為5.
故選:C.

點評 本題考查交集中元素個數(shù)的求法,是基礎題,解題時要認真審題,注意補集、交集定義的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2017屆湖南長沙長郡中學高三上周測十二數(shù)學(文)試卷(解析版) 題型:解答題

已知是等差數(shù)列, 是等比數(shù)列, 為數(shù)列的前項和, ,且, ).

(1)求

(2)若,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知A(-m,0),B(m,0)(m>2)若三角形ABC內(nèi)切圓的圓心在直線x=1上運動,則頂點C軌跡方程可能為( 。
A.${x^2}-\frac{y^2}{6}=1$B.${x^2}-\frac{y^2}{6}=1(x>1)$C.$\frac{x^2}{4}-\frac{y^2}{8}=1(x>2)$D.$\frac{x^2}{4}-\frac{y^2}{8}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若m2+n2=t2(m,n,t為實數(shù),且t≠0),則$\frac{n}{m-2t}$的取值集合是$[-\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}]$.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆湖南長沙長郡中學高三上周測十二數(shù)學(理)試卷(解析版) 題型:解答題

已知函數(shù)

(1)若,求證:;

(2)若,,求的最大值;

(3)求證:當時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若函數(shù)f(x)=a(x-2)ex+lnx+$\frac{1}{x}$在(0,2)上存在兩個極值點,則a的取值范圍為( 。
A.(-∞,-$\frac{1}{4{e}^{2}}$)B.(-$\frac{1}{e}$,$\frac{1}{4{e}^{2}}$)∪(1,+∞)
C.(-∞,-$\frac{1}{e}$)D.(-∞,-$\frac{1}{e}$)∪(--$\frac{1}{e}$,-$\frac{1}{4{e}^{2}}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=3,|$\overrightarrow{a}$-$\overrightarrow$|=2,則$\frac{|\overrightarrow{a}|}{\overrightarrow{a}•\overrightarrow}$的取值范圍為[$\frac{2}{5}$,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.F是拋物線y2=4x的焦點,P、Q是拋物線上兩點,|PF|=2,|QF|=5,則|PQ|=(  )
A.3$\sqrt{5}$B.4$\sqrt{3}$C.3$\sqrt{5}$或$\sqrt{13}$D.3$\sqrt{5}$或4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.偶函數(shù)f(x)在(0,+∞)單調(diào)遞減,f(1)=0,不等式f(x)>0的解集為(-1,0)∪(0,1).

查看答案和解析>>

同步練習冊答案