9.已知雙曲線${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$與圓${C_2}:{x^2}+{y^2}={c^2}$(c是雙曲線的半焦距)相交于第一象限內(nèi)一點P,又F1,F(xiàn)2分別是雙曲線C1的左、右焦點,若$∠P{F_2}{F_1}=\frac{π}{3}$,則雙曲線的離心率為$\sqrt{3}+1$.

分析 由題意可得,三角形F1F2P是有一個內(nèi)角為60°角的直角三角形,根據(jù)此直角三角形,結(jié)合雙曲線的離心率的定義即可求得雙曲線的離心率.

解答 解:由題設(shè)知圓C2的直徑為F1F2,則$∠{F_1}P{F_2}=\frac{π}{2}$,又$∠P{F_2}{F_1}=\frac{π}{3}$,
所以$|{P{F_1}}|=\sqrt{3}c$,|PF2|=c,
由雙曲線的定義得|PF1|-|PF2|=2a,即$(\sqrt{3}-1)c=2a$,所以$e=\frac{2}{{\sqrt{3}-1}}=\sqrt{3}+1$.
故答案為$\sqrt{3}+1$.

點評 本題考查雙曲線的離心率,考查雙曲線的定義的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某手機廠商推出一款6寸大屏手機,現(xiàn)對500名該手機用戶(200名女性,300名男性)進行調(diào)查,對手機進行評分,評分的頻數(shù)分布表如下:
女性用戶分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)2040805010
男性用戶分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)4575906030
(1)完成下列頻率分布直方圖,并指出女性用戶和男性用戶哪組評分更穩(wěn)定(不計算具體值,給出結(jié)論即可);

(2)根據(jù)評分的不同,運用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意抽取2名用戶,求兩名用戶中評分都小于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)f(x)=(x+1)ln(x+1).
(1)求f(x)的最小值;
(2)若對任意的x≥0,都有f(x)≥ax成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的圖象與x軸的交點中,相鄰兩個交點之間的距離為$\frac{π}{2}$,且圖象上一個最低點為$M(\frac{2π}{3},-2)$
(1)求A,ω,φ的值.
(2)寫出函數(shù)f(x)圖象的對稱中心及單調(diào)遞增區(qū)間.
(3)當(dāng)x∈$[{\frac{π}{12},\frac{π}{2}}]$時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知△ABC中,$AB=1,BC=\sqrt{3},BD$是AC邊上的中線.
(1)求$\frac{sin∠ABD}{sin∠CBD}$;
(2)若$BD=\frac{{\sqrt{7}}}{2}$,求AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知拋物線C:y2=2px(p>0)與直線y=x+1相切.
(1)求拋物線C的方程;
(2)設(shè)A(x1,y1),B(x2,y2)是曲線C上兩個動點,其中x1≠x2,且x1+x2=4,線段AB的垂直平分線l與x軸相交于點Q,求△ABQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示,在直角梯形ABCD中,AB∥CD,∠ABC=90°,CD=BC=1,點E為AD邊上的中點,過點D作DF∥BC交AB于點F,現(xiàn)將此直角梯形沿DF折起,使得A-FD-B為直二面角,如圖乙所示.
(1)求證:AB∥平面CEF;
(2)若二面角的余弦值為-$\frac{\sqrt{30}}{10}$,求AF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合P={-1,0,1},$Q=\left\{{x\left|{y=\sqrt{x+1}}\right.}\right\}$,則P∩Q=( 。
A.PB.QC.{-1,1}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若直線ax-y=0(a≠0)與函數(shù)$f(x)=\frac{{2{{cos}^2}x+1}}{{ln\frac{2+x}{2-x}}}$圖象交于不同的兩點A,B,且點C(6,0),若點D(m,n)滿足$\overrightarrow{DA}+\overrightarrow{DB}=\overrightarrow{CD}$,則m+n=2.

查看答案和解析>>

同步練習(xí)冊答案