(本小題滿(mǎn)分12分)
三棱錐被平行于底面的平面所截得的幾何體如圖所示,截面為,平面,,中點(diǎn).
(Ⅰ)證明:平面平面;
(Ⅱ)求二面角的正弦值.
解:(Ⅰ)平面平面,
中,中點(diǎn)
平面,平面平面
(Ⅱ)如圖,作點(diǎn),連接,
已知得平面在面內(nèi)的射影.
由三垂線(xiàn)定理知,為二面角的平面角.
過(guò)點(diǎn),則,
.在中,
中,,
即二面角的正弦值是
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

三棱錐D-ABC中,AC=BD,且AC與BD所成角為60°,E、F分別分別是棱DC,AB的中點(diǎn),則EF和AC所成的角等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)
如圖,在四棱錐-中,底面是邊長(zhǎng)為的正方形,、分別為、的中點(diǎn),側(cè)面底面,且。
(Ⅰ)求證:平面
(Ⅱ)求證:平面平面;
(Ⅲ)求三棱錐-的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐的底面是正方形,每條側(cè)棱的長(zhǎng)都是底面邊長(zhǎng)的倍,為側(cè)棱上的點(diǎn)。
(Ⅰ)求證:;
(Ⅱ)若平面,求二面角的大。
(Ⅲ)在(Ⅱ)的條件下,側(cè)棱上是否存在一點(diǎn), 使得平面。若存在,求的值;若不存在,試說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分)如圖,在中,,垂足為,且

(Ⅰ)求的大。
(Ⅱ)設(shè)的中點(diǎn),已知的面積為15,求的長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列關(guān)于互不相同的直線(xiàn)和平面的命題,其中為真命題的是
A.若,則
B.若所成的角相等,則
C.若,則
D.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在底面為矩形的四棱錐中,平面,的中點(diǎn).
(1)求證://平面
(2)求證:;
(3)是否存在正實(shí)數(shù)使得平面平面?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在正方體中,點(diǎn)在線(xiàn)段上運(yùn)動(dòng)時(shí),給出下列四個(gè)命題:

①三棱錐的體積不變;
②直線(xiàn)與平面所成角的大小不變;
③直線(xiàn)與直線(xiàn)所成角的大小不變;
④二面角的大小不變.
其中所有真命題的編號(hào)是               

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

平面α⊥平面β, αβl, 點(diǎn)P∈α, 點(diǎn)Q∈l, 那么PQ⊥l是PQ⊥β的(    )
A.充分但不必要條件B.必要但不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案