17.${6^n}+C_n^1{6^{n-1}}+…+C_n^{n-1}6-1$被8除,所得的余數(shù)為5.(其中n為奇數(shù))

分析 原式可化為:7n-2=(8-1)n-2,即8×M-3,進(jìn)而得到答案.

解答 解:原式=(6+1)n-2=7n-2=(8-1)n-2=8×M-3,(M為整數(shù)),
故${6^n}+C_n^1{6^{n-1}}+…+C_n^{n-1}6-1$被8除,所得的余數(shù)為5,
故答案為:5.

點(diǎn)評 本題考查的知識點(diǎn)是二項(xiàng)式定理的應(yīng)用,整除的定義,轉(zhuǎn)化思想,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

在斜△中,角,,所對的邊長分別為,,,,且△的面積為1,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知一個(gè)幾何體的三視圖如圖所示,若該幾何體的體積為$\frac{10}{3}$,則a+b2的最小值為(  )
A.4$\sqrt{3}$B.3$\sqrt{3}$C.4D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.0到9之間取整數(shù)值的隨機(jī)數(shù),指定0,1表示沒有擊中目標(biāo),2,3,4,5,6,7,8,9表示擊中目標(biāo),以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):
7527   0293   7140   9857   0347   4373   8636   6947   1417   4698
0371   6233   2616   8045   6011   3661   9597   7424   7610   4281
根據(jù)以上數(shù)據(jù)估計(jì)該射擊運(yùn)動員射擊4次至少擊中3次的概率為(  )
A.0.852B.0.8192C.0.8D.0.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,|AB|=1,|AC|=$\sqrt{3}$,若|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,則其形狀為③;若?λ∈R使|λ$\overrightarrow{AB}$-$\overrightarrow{AC}$|≤$\sqrt{2}$成立,則$\overrightarrow{AB}$•$\overrightarrow{AC}$的范圍是$(-\sqrt{3},-1]∪[1,\sqrt{3})$
(①銳角三角形 ②鈍角三角形  ③直角三角形,在橫線上填上序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=2cos2x+$\sqrt{3}$sin2x
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,$\frac{π}{3}}$]時(shí),求f(x)的最大值及x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某同學(xué)報(bào)名參加“瘋狂的麥咭”的選拔.已知在備選的10道試題中,該同學(xué)能答對其中的6題,規(guī)定每次考試都從備選題中隨機(jī)抽出3題進(jìn)行測試(必須3題全部答完),至少答對2題才能入選.
(Ⅰ)求該同學(xué)答對試題數(shù)ξ的概率分布列及數(shù)學(xué)期望;
(Ⅱ)設(shè)η為該同學(xué)答對試題數(shù)與該同學(xué)答錯(cuò)試題數(shù)之差的平方,記“函數(shù)$f(x)=|η-\frac{1}{2}{|^x}$在定義域內(nèi)單調(diào)遞增”為事件C,求事件C的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓:C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為e=$\frac{\sqrt{6}}{3}$,過C1的左焦點(diǎn)F1的直線l:x-y+2=0被圓C2:(x-3)2+(y-3)2=r2(r>0)截得的弦長為2$\sqrt{2}$.
(1)求橢圓C1的方程;
(2)設(shè)C1的右焦點(diǎn)為F2,在圓C2上是否存在點(diǎn)P,滿足|PF1|=$\frac{{a}^{2}}{^{2}}$|PF2|,若存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知拋物線C1:y2=2x及圓C2:(x-1)2+y2=1.點(diǎn)P(a,b)為C1上一點(diǎn).
(Ⅰ)當(dāng)a=2時(shí),求過點(diǎn)P的圓C2的切線方程;
(Ⅱ)當(dāng)a>2時(shí),過點(diǎn)P作圓C2的兩條切線l1,l2分別與y軸交于B,C兩點(diǎn),求△PBC的面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案