已知圓C1x2y2-2x+2y+1=0和圓C2x2y2-2=0,且C1C2相交于A、B兩點,則方程x2y2-2x+2y+1+λ(x2y2-2)=0(λ∈R)表示( 。

A.過A、B兩點的所有圓

B.過AB兩點的圓,但不包括C1C2

C.過A、B兩點的圓(除C2)及直線AB

D.過A、B兩點的所有圓及AB

C


解析:

λ=0時,x2+y2-2x+2y+1+λx2+y2-2)=0表示圓C1;

λ=-1時,表示直線-2x+2y+3=0;

λ為0、-1外的其他任何實數(shù)時,都表示圓.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•惠州二模)已知圓C1:x2+y2=2和圓C2,直線l與C1切于點M(1,1),圓C2的圓心在射線2x-y=0(x≥0)上,且C2經(jīng)過坐標原點,如C2被l截得弦長為4
3

(1)求直線l的方程;
(2)求圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C1x2+y2=4,圓C2x2+y2=25.點O為坐標原點,點M是圓C2上的一動點,線段OM交圓C1于N,過點M作x軸的垂線交x軸于M0,過點N作M0M的垂線交M0M于P.
(1)當動點M在圓C2上運動時,求點P的軌跡C的方程.
(2)設直線l:y=
x
5
+m
與軌跡C交于不同的兩點,求實數(shù)m的取值范圍.
(3)當m=
5
5
時,直線l與軌跡C相交于A,B兩點,求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C1x2+y2-2x-4y+4=0
(Ⅰ)若直線l:x+2y-4=0與圓C1相交于A,B兩點.求弦AB的長;
(Ⅱ)若圓C2經(jīng)過E(1,-3),F(xiàn)(0,4),且圓C2與圓C1的公共弦平行于直線2x+y+1=0,求圓C2的方程.
(Ⅲ)求證:不論實數(shù)λ取何實數(shù)時,直線l1:2λx-2y+3-λ=0與圓C1恒交于兩點,并求出交點弦長最短時直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C1:x2+(y+5)2=5,設圓C2為圓C1關于直線l對稱的圓,則在x軸上是否存在點P,使得P到兩圓的切線長之比為
2
?薦存在,求出點P的坐標;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:學習周報 數(shù)學 人教課標高一版(A必修2) 2009-2010學年 第23期 總179期 人教課標高一版 題型:044

圓心在同一條直線上,且相鄰的圓彼此外切的一組圓叫做“糖葫蘆圓”.如圖,若在“糖葫蘆圓”中,已知圓C1:x2+(y-1)2=2,圓C3:(x-6)2+(y-7)2=2,求圓C2的方程.

查看答案和解析>>

同步練習冊答案