設(shè)實(shí)數(shù)x,y滿(mǎn)足
x-y-2≤0
x+2y-5≥0
y-2≤0
,則u=
x+y
x
的最小值是( 。
A、
1
3
B、2
C、3
D、
4
3
分析:先根據(jù)約束條件畫(huà)出可行域,設(shè)u=
x+y
x
=1+
y
x
,再利用u的幾何意義求最值,只需求出區(qū)域內(nèi)的點(diǎn)P與原點(diǎn)連線(xiàn)的斜率的最小值即可.
解答:精英家教網(wǎng)解:先根據(jù)約束條件畫(huà)出可行域,設(shè)u=
x+y
x
=1+
y
x
,將z轉(zhuǎn)化區(qū)域內(nèi)的點(diǎn)P與原點(diǎn)連線(xiàn)的斜率,
當(dāng)動(dòng)點(diǎn)P在點(diǎn)B時(shí),z的值最小,最小為:1+
1
3
=
4
3
,
故選D.
點(diǎn)評(píng):本題主要考查了用平面區(qū)域二元一次不等式組,以及簡(jiǎn)單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.巧妙識(shí)別目標(biāo)函數(shù)的幾何意義是我們研究規(guī)劃問(wèn)題的基礎(chǔ),縱觀(guān)目標(biāo)函數(shù)包括線(xiàn)性的與非線(xiàn)性,非線(xiàn)性問(wèn)題的介入是線(xiàn)性規(guī)劃問(wèn)題的拓展與延伸,使得規(guī)劃問(wèn)題得以深化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿(mǎn)足 
x-y-2≤0
x+2y-5≥0
y-2≤0
,則u=
x2+y2
xy
的取值范圍是( 。
A、[2,
5
2
]
B、[
5
2
,
10
3
]
C、[2,
10
3
]
D、[
1
4
,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿(mǎn)足
x≤3
x-y+2≥0
x+y-4≥0
,則x2+y2的取值范圍是
[8,34]
[8,34]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿(mǎn)足
x-y-2≤0
x+2y-4≥0
2y-3≤0
,則
y
x
的最大值是
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿(mǎn)足
x-y-2≤0
x+2y-4≥0
2y-3≤0
,則z=
x
y
的最小值是
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•威海一模)設(shè)實(shí)數(shù)x,y滿(mǎn)足
x+2y-4≤0
x-y≥0
y>0
,則x-2y的最大值為
4
4

查看答案和解析>>

同步練習(xí)冊(cè)答案