【題目】在如圖所示的幾何體中,平面平面,四邊形為平行四邊形, , , , .
(1)求證: 平面;
(2)求到平面的距離;
(3)求三棱錐的體積.
【答案】(1)詳見(jiàn)解析;(2);(3).
【解析】試題分析:(1)先根據(jù)面面垂直性質(zhì)定理得平面,即得,再利用勾股定理得,最后根據(jù)線面垂直判定定理得結(jié)論(2)先根據(jù)平行轉(zhuǎn)化到平面的距離為點(diǎn)到平面的距離,再作,由面面垂直性質(zhì)定理得平面,最后計(jì)算即得結(jié)果(3)由于已知到平面的距離,所以利用等體積法先轉(zhuǎn)化為,再根據(jù)錐體體積公式求體積
試題解析:(1)∵平面平面,且平面平面,
又平面, ,
∴平面,
而平面,∴,
∵, ,∴,∴,
又,∴平面.
(2)設(shè)的中點(diǎn)為,連接,
∵,∴.
∵平面平面,且平面平面,
∴平面,
∵, 平面,
所以點(diǎn)到平面的距離就等于點(diǎn)到平面的距離,
即點(diǎn)到平面的距離為.
(3)∴,
∵,
∴,即三棱錐的體積為.
點(diǎn)睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見(jiàn)類型.
(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.
(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.
(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(x+1)+loga(3﹣x)(a>0且a≠1),且f(1)=2
(1)求a的值及f(x)的定義域;
(2)若不等式f(x)≤c的恒成立,求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只小船以的速度由南向北勻速駛過(guò)湖面,在離湖面高20米的橋上,一輛汽車由西向東以的速度前進(jìn)(如圖),現(xiàn)在小船在水平面上的點(diǎn)以南的40米處,汽車在橋上點(diǎn)以西的30米處(其中水平面),請(qǐng)畫出合適的空間圖形并求小船與汽車間的最短距離.(不考慮汽車與小船本身的大小).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an},{bn}的通項(xiàng)公式分別是an=(﹣1)n+2016a,bn=2+ ,若an<bn , 對(duì)任意n∈N+恒成立,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行. (Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 。
(1)求函數(shù)的定義域和值域;
(2)設(shè)(為實(shí)數(shù)),求在時(shí)的最大值;
(3)對(duì)(2)中,若對(duì)所有的實(shí)數(shù)及恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且2Sn=(n+2)an﹣1(n∈N*).
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)Tn= ,求證:Tn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓經(jīng)過(guò)點(diǎn), ,且圓心在直線上.
(1)求圓的方程;
(2)過(guò)點(diǎn)的直線與圓交于兩點(diǎn),問(wèn)在直線上是否存在定點(diǎn),使得恒成立?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com