【題目】已知圓C:,直線:

1)求證:直線過(guò)定點(diǎn);

2)判斷該定點(diǎn)與圓的位置關(guān)系;

3)當(dāng)m為何值時(shí),直線被圓C截得的弦最長(zhǎng).

【答案】1)證明見(jiàn)解析(2)直線l與圓C總相交.(3

【解析】

1)由題意可知:,則,即可求得點(diǎn)坐標(biāo),直線過(guò)定點(diǎn);

2)由坐標(biāo)代入圓的方程,得左邊右邊,點(diǎn)在圓內(nèi);

3)當(dāng)直線經(jīng)過(guò)圓心時(shí),被截得的弦最長(zhǎng),可知直線的斜率,由,則,即可求得的值.

1)證明:將直線,

整理得:,

由于的任意性,則,解得,

直線恒過(guò)定點(diǎn);

2)把點(diǎn)坐標(biāo)代入圓的方程,得左邊右邊,

點(diǎn)在圓內(nèi);

3)當(dāng)直線經(jīng)過(guò)圓心時(shí),被截得的弦最長(zhǎng)(等于圓的直徑長(zhǎng)),

此時(shí),直線的斜率,

由直線的方程得,

由點(diǎn)的坐標(biāo)得,

,解得:,

所以,當(dāng),時(shí),直線被圓截得的弦最長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)若函數(shù)處取得極大值,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,

1)若直線過(guò)定點(diǎn),且與圓C相切,求的方程.

2)若圓D的半徑為3,圓心在直線上,且與圓C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的一段圖象如圖所示.

1)求該函數(shù)的解析式;

2)求該函數(shù)的單調(diào)增區(qū)間;

3)該函數(shù)的圖象可由的圖象經(jīng)過(guò)怎樣的平移和伸縮變換得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)命題:

①若樣本數(shù)據(jù)的方差為,則數(shù)據(jù)的方差為;

②“平面向量的夾角為銳角,則”的逆命題為真命題;

③命題“,均有”的否定是“,均有”;

是直線與直線平行的必要不充分條件.

其中正確的命題個(gè)數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是圓內(nèi)一個(gè)定點(diǎn),是圓上任意一點(diǎn).線段的垂直平分線和半徑相交于點(diǎn).

(Ⅰ)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡是什么曲線?并求出其軌跡方程;

(Ⅱ)過(guò)點(diǎn)作直線與曲線交于、兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年為我國(guó)改革開(kāi)放40周年,某事業(yè)單位共有職工600人,其年齡與人數(shù)分布表如下:

年齡段

人數(shù)(單位:人)

180

180

160

80

約定:此單位45歲~59歲為中年人,其余為青年人,現(xiàn)按照分層抽樣抽取30人作為全市慶祝晚會(huì)的觀眾.

(1)抽出的青年觀眾與中年觀眾分別為多少人?

(2)若所抽取出的青年觀眾與中年觀眾中分別有12人和5人不熱衷關(guān)心民生大事,其余人熱衷關(guān)心民生大事.完成下列列聯(lián)表,并回答能否有的把握認(rèn)為年齡層與熱衷關(guān)心民生大事有關(guān)?

熱衷關(guān)心民生大事

不熱衷關(guān)心民生大事

總計(jì)

青年

12

中年

5

總計(jì)

30

(3)若從熱衷關(guān)心民生大事的青年觀眾(其中1人擅長(zhǎng)歌舞,3人擅長(zhǎng)樂(lè)器)中,隨機(jī)抽取2人上表演節(jié)目,則抽出的2人能勝任才藝表演的概率是多少?

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).當(dāng)點(diǎn)在函數(shù)圖象上運(yùn)動(dòng)時(shí),對(duì)應(yīng)的點(diǎn)在函數(shù)圖象上運(yùn)動(dòng),則稱函數(shù)是函數(shù)的相關(guān)函數(shù).

1)解關(guān)于的不等式;

2)對(duì)任意的,的圖象總在其相關(guān)函數(shù)圖象的下方,求的取值范圍;

3)設(shè)函數(shù),.當(dāng)時(shí),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐SABC中,SA=AB=AC=BC=SB=SC,OBC的中點(diǎn)

(1)求證:SO⊥平面ABC

(2)在線段AB上是否存在一點(diǎn)E,使二面角B—SC-E的平面角的余弦值為?若存在,求的值,若不存在,試說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案