1.命題“若x>1且y<-3,則x-y>4”的等價命題是“若x-y≤4,則x≤1或y≥-3”.

分析 根據(jù)原命題與它的逆否命題是互為等價的命題,寫出它的逆否命題即可.

解答 解:根據(jù)原命題與它的逆否命題是互為等價的命題,
所以命題“若x>1且y<-3,則x-y>4”的等價命題是:
“若x-y≤4,則x≤1或y≥-3”.
故答案為:“若x-y≤4,則x≤1或y≥-3”.

點評 本題考查了原命題與它的逆否命題是等價命題的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.某人上午7時,乘摩托艇以勻速vkm/h(8≤v≤40)從A港出發(fā)到距100km的B港去,然后乘汽車以勻速wkm/h(30≤w≤100)自B港向距300km的C市駛去.應該在同一天下午4至9點到達C市. 設乘坐汽車、摩托艇去目的地所需要的時間分別是xh,yh.
(1)作圖表示滿足上述條件的x,y范圍;
(2)如果已知所需的經費p=100+3(5-x)+2(8-y)(元),那么v,w分別是多少時p最。看藭r需花費多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知一個空間幾何體的三視圖如圖所示,根據(jù)圖中標出的尺寸,可得這個幾何體的全面積為10+2$\sqrt{3}$+4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知全集U=A∪B={x是自然數(shù)|0≤x≤10},A∩(∁UB)={1,3,5,7},A∩B⊆{2,4},求集合A和B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.橢圓$\frac{x^2}{5}$+$\frac{{3{y^2}}}{5}$=1與過點C(-1,0)且斜率為k的直線交于A、B兩點.
(1)若線段AB的中點為(-$\frac{1}{2}$,n),求k的值;
(2)在x軸上是否存在一個定點M,使得$\overrightarrow{MA}$•$\overrightarrow{MB}$的值為常數(shù),若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.x,y為實數(shù),使x>y且$\frac{1}{x}$>$\frac{1}{y}$同時成立的一個充要條件是xy<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.函數(shù)f(x)=[x]的函數(shù)值表示不超過x的最大整數(shù),例如[-3.5]=-4,[2.1]=2,則f(x)-x=0的解有( 。
A.1B.2C.3D.無數(shù)個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)的定義域為(-1,1),對任意x,y∈(-1,1),有f(x)+f(y)=f(${\frac{x+y}{1+xy}}$).
(1)驗證函數(shù)f(x)=lg($\frac{1-x}{1+x}$)是否滿足這些條件;
(2)判斷函數(shù)f(x)的奇偶性并證明;
(3)若f($\frac{a+b}{1+ab}$)=1,f($\frac{a-b}{1-ab}$)=2,且|a|<1,|b|<1,求f(a),f(b)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知橢圓$\frac{x^2}{4}$+$\frac{y^2}{2}$=1,點A在橢圓上(不是頂點),點A關于x軸、y軸、原點的對稱點分別為B、D、C,求四邊形ABCD面積的最大值.

查看答案和解析>>

同步練習冊答案