1.某工廠生產一種螺栓,在正常情況下,螺栓的直徑X(單位:mm)服從正態(tài)分布X~N(100,1).現(xiàn)加工10個螺栓的尺寸(單位:mm)如下:
101.7,100.3,99.6,102.4,98.2,103.2,101.1,98.8,100.4,100.0.
X~N(μ,σ2)有P(μ-2σ<X<μ+2σ)=0.954,P(μ-3σ<X<μ+3σ)=0.997.根據(jù)行業(yè)標準,概率低于0.003視為小概率事件,工人隨機將其中的8個交與質檢員檢驗,則質檢員認為設備需檢修的概率為( 。
A.$\frac{44}{45}$B.$\frac{4}{5}$C.$\frac{3}{5}$D.$\frac{41}{45}$

分析 10個螺栓的尺寸,只有103.2>103,即可求出工人隨機將其中的8個交與質檢員檢驗,質檢員認為設備需檢修的概率.

解答 解:10個螺栓的尺寸,只有103.2>103,∴工人隨機將其中的8個交與質檢員檢驗,質檢員認為設備需檢修的概率為$\frac{{C}_{9}^{7}}{{C}_{10}^{2}}$=$\frac{4}{5}$,
故選B.

點評 本題考查正態(tài)分布,考查概率的計算,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知A,B分別為橢圓C:$\frac{x^2}{4}+\frac{y^2}{2}=1$的左、右頂點,P為橢圓C上異于A,B兩點的任意一點,直線PA,PB的斜率分別記為k1,k2
(1)求k1k2;
(2)過坐標原點O作與直線PA,PB平行的兩條射線分別交橢圓C于點M,N,問:△MON的面積是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某保險公司針對企業(yè)職工推出一款意外險產品,每年每人只要交少量保費,發(fā)生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為A、B、C三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計出三類工種的每賠付頻率如下表(并以此估計賠付概率).
工種類別ABC
賠付頻率$\frac{1}{1{0}^{5}}$$\frac{2}{1{0}^{5}}$$\frac{1}{1{0}^{4}}$
(Ⅰ)根據(jù)規(guī)定,該產品各工種保單的期望利潤都不得超過保費的20%,試分別確定各類工種每張保單保費的上限;
(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準備為全體職工每人購買一份此種保險,并以(Ⅰ)中計算的各類保險上限購買,試估計保險公司在這宗交易中的期望利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.我國古代數(shù)學名著《九章算術》第三章“衰分”介紹比例分配:“衰分”是按比例遞減分配的意思,通常稱遞減的比例(即百分比)為“衰分比”.如:甲、乙、丙、丁分別得100,60,36,21.6個單位,遞減的比例是40%,今共有糧食m(m>0)石,按甲、乙、丙、丁的順序進行“衰分”,已知丁分得2石,乙、丙所得之和為40石,則衰分比與m的值分別是( 。
A.75%,170B.75%,340C.25%,170D.25%,340

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設f(x)=|x+a|-|x+1|.
(Ⅰ)求不等式f(a)>1的解集;
(Ⅱ)當x∈R時,f(x)≤2a(a∈R),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.經統(tǒng)計,2015年,某公路在部分界樁附近發(fā)生的交通事故次數(shù)如下表:
界樁公里數(shù)  100110051010102010251049
交通事故數(shù)  804035333230
把界樁公里數(shù)1001記為x=1,公里數(shù)1005記為x=5,…,數(shù)據(jù)繪成的散點圖如圖所示,以x為解釋變量、交通事故數(shù)y為預報變量,建立了兩個不同的回歸方程y(1)=29.9+50.2×$\frac{1}{x}$和y(2)=33.9+125.9e-x表述x,y二者之間的關系.
(Ⅰ)計算R2的值,判斷這兩個回歸方程中哪個擬合效果更好?并解釋更好的這個擬合所對R2的意義;
(Ⅱ)若保險公司在每次交通事故中理賠60萬元的概率為0.01,理賠2萬元的概率為0.19,理賠0.2萬元的概率為0.8,利用你得到的擬合效果更好的這一個回歸方程,試預報這一年在界樁1040公里附近處發(fā)生的交通事故的理賠費(理賠費精確到0.1萬元).
附:對回歸直線y=$\widehat{α}$+$\widehat{β}$x,有R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.
一些量的計算值:
    $\overline{y}$       $\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}$ $\sum_{i=1}^{6}({y}_{i}-{\widehat{{y}_{i}}}^{(1)})^{2}$ $\sum_{i=1}^{6}({y}_{i}-{\widehat{{y}_{i}}}^{(2)})^{2}$
 41.7        1821 0.875 48.4
表中:${\widehat{{y}_{i}}}^{(1)}$=29.9+50.2×$\frac{1}{{x}_{i}}$,${\widehat{{y}_{i}}}^{(2)}$=33.9+125.9e${\;}^{-{x}_{i}}$,$\frac{1}{40}$=0.025,e-40≈0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,則輸出的k=( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f0(x)=sinx+cosx,f1(x)=f′0(x),f2(x)=f′1(x),…fn+1(x)=f′n(x),n∈N,那么f2017=(  )
A.cosx-sinxB.sinx-cosxC.sinx+cosxD.-sinx-cosx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若復數(shù)z=(1+i)•i2(i表示虛數(shù)單位),則$\overline{z}$=-1+i.

查看答案和解析>>

同步練習冊答案