某單位實行休年假制度三年來,名職工休年假的次數(shù)進行的調(diào)查統(tǒng)計結(jié)果如下表所示:

休假次數(shù)




人數(shù)




根據(jù)上表信息解答以下問題:
⑴從該單位任選兩名職工,用表示這兩人休年假次數(shù)之和,記“函數(shù),在區(qū)間,上有且只有一個零點”為事件,求事件發(fā)生的概率
⑵從該單位任選兩名職工,用表示這兩人休年假次數(shù)之差的絕對值,求隨機變量的分布列及數(shù)學期望.

(1)
(2)的分布列:


0
1
2
3





的數(shù)學期望:

解析試題分析:解:(1) 函數(shù)點,在區(qū)間上有且只有一個零點,則必有即:,解得:
所以,                           3分
時,,當時, 
為互斥事件,由互斥事件有一個發(fā)生的概率公式
所以                        7分
(2) 從該單位任選兩名職工,用表示這兩人休年假次數(shù)之差的絕對值,則的可能取值分別是,            
于是
,
,
           10分
從而的分布列:


0
1
2
3





的數(shù)學期望:.            14分
考點:組合數(shù)與概率,分布列
點評:解答題主要是考查了運用組合數(shù)來表示古典概型概率以及分布列的求解,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

為了調(diào)查某大學學生在周日上網(wǎng)的時間,隨機對1OO名男生和100名女生進行了不記 名的問卷調(diào)查.得到了如下的統(tǒng)計結(jié)果:
表1:男生上網(wǎng)時間與頻數(shù)分布表

表2:女生上網(wǎng)時間與頻數(shù)分布表

(I)若該大學共有女生750人,試估計其中上網(wǎng)時間不少于60分鐘的人數(shù);
(II)完成下面的2x2列聯(lián)表,并回答能否有90%的把握認為“學生周日上網(wǎng)時間與性 別有關(guān)”?
表3:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若是從三個數(shù)中任取的一個數(shù),是從四個數(shù)中任取的一個數(shù),求為偶函數(shù)的概率;
(Ⅱ)若,是從區(qū)間任取的一個數(shù),求方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某產(chǎn)品的三個質(zhì)量指標分別為x, y, z, 用綜合指標S =" x" + y + z評價該產(chǎn)品的等級. 若S≤4, 則該產(chǎn)品為一等品. 現(xiàn)從一批該產(chǎn)品中, 隨機抽取10件產(chǎn)品作為樣本, 其質(zhì)量指標列表如下:

產(chǎn)品編號
A1
A2
A3
A4
A5
質(zhì)量指標(x, y, z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
產(chǎn)品編號
A6
A7
A8
A9
A10
質(zhì)量指標(x, y, z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
(Ⅰ) 利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率;
(Ⅱ) 在該樣品的一等品中, 隨機抽取兩件產(chǎn)品,
(1) 用產(chǎn)品編號列出所有可能的結(jié)果;
(2) 設(shè)事件B為 “在取出的2件產(chǎn)品中, 每件產(chǎn)品的綜合指標S都等于4”, 求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某市舉行一次數(shù)學新課程骨干培訓活動,共邀請15名使用不同版本教材的數(shù)學教師,具體情況數(shù)據(jù)如下表所示:

版本
人教A版
人教B版
性別
男教師
女教師
男教師
女教師
人數(shù)
6

4

 
現(xiàn)從這15名教師中隨機選出2名,則2人恰好是教不同版本的女教師的概率是.且.
(1)求實數(shù),的值
(2)培訓活動現(xiàn)隨機選出2名代表發(fā)言,設(shè)發(fā)言代表中使用人教B版的女教師人數(shù)為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩支排球隊進行比賽,約定先勝局者獲得比賽的勝利,比賽隨即結(jié)束。除第五局甲隊獲勝的概率是外,其余每局比賽甲隊獲勝的概率都是。假設(shè)各局比賽結(jié)果相互獨立。
(Ⅰ)分別求甲隊以勝利的概率;
(Ⅱ)若比賽結(jié)果為求,則勝利方得分,對方得分;若比賽結(jié)果為,則勝利方得分、對方得分。求乙隊得分的分布列及數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

下圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機選擇3月1日至3月13日中的某一天到達該市,并停留2天

(Ⅰ)求此人到達當日空氣重度污染的概率
(Ⅱ)設(shè)X是此人停留期間空氣質(zhì)量優(yōu)良的天數(shù),求X的分布列與數(shù)學期望.
(Ⅲ)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.

一次購物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顧客數(shù)(人)

30
25

10
結(jié)算時間(分鐘/人)
1
1.5
2
2.5
3
已知這100位顧客中的一次購物量超過8件的顧客占55%.
(Ⅰ)確定x,y的值,并求顧客一次購物的結(jié)算時間X的分布列與數(shù)學期望;
(Ⅱ)若某顧客到達收銀臺時前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨立,求該顧客結(jié)算前的等候時間不超過2.5分鐘的概率.(注:將頻率視為概率)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

“中國式過馬路”存在很大的交通安全隱患.某調(diào)
查機構(gòu)為了解路人對“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機抽取30名路
人進行了問卷調(diào)查,得到了如下列聯(lián)表:

 
男性
女性
合計
反感
10
 
 
不反感
 
8
 
合計
 
 
30
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是.
(Ⅰ)請將上面的列聯(lián)表補充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路”與性別是否有關(guān)?
(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案