【題目】如圖,在以為頂點(diǎn),母線長為的圓錐中,底面圓的直徑長為2,是圓所在平面內(nèi)一點(diǎn),且是圓的切線,連接交圓于點(diǎn),連接,.

1)求證:平面平面;

2)若的中點(diǎn),連接,,當(dāng)二面角的大小為時(shí),求平面與平面所成銳二面角的余弦值.

【答案】(1)詳見解析;(2).

【解析】

1)由是圓的直徑,與圓切于點(diǎn),可得,

底面圓,可得,利用線面垂直的判定定理可知,平面,即可推出.中,,可推出,利用線面垂直的判定定理可證平面,從而利用面面垂直的判定定理可證出平面平面.

2)由,,可知為二面角的平面角,

,建立空間直角坐標(biāo)系,易知

求得點(diǎn)的坐標(biāo)如下;,,

,,

由(1)知為平面的一個(gè)法向量,

設(shè)平面的法向量為,

,

通過,∴,

可求出平面的一個(gè)法向量為,

.

平面與平面所成銳二面角的余弦值為.

解:(1)是圓的直徑,與圓切于點(diǎn)

底面圓,

,平面.

∵在中,

,平面,從而平面平面.

(2),為二面角的平面角,

,

如圖建立空間直角坐標(biāo)系,易知

,,

,,,

由(1)知為平面的一個(gè)法向量,

設(shè)平面的法向量為,

,,

,∴,

,即

故平面的一個(gè)法向量為

.

平面與平面所成銳二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC,AC⊥BC,H為PC的中點(diǎn),M為AH中點(diǎn),PA=AC=2,BC=1.

(Ⅰ)求證:AH⊥平面PBC;

(Ⅱ)求PM與平面AHB成角的正弦值;

(Ⅲ)在線段PB上是否存在點(diǎn)N,使得MN∥平面ABC,若存在,請(qǐng)說明點(diǎn)N的位置,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型工廠有臺(tái)大型機(jī)器,在個(gè)月中,臺(tái)機(jī)器至多出現(xiàn)次故障,且每臺(tái)機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需名工人進(jìn)行維修.每臺(tái)機(jī)器出現(xiàn)故障的概率為.已知名工人每月只有維修臺(tái)機(jī)器的能力,每臺(tái)機(jī)器不出現(xiàn)故障或出現(xiàn)故障時(shí)有工人維修,就能使該廠獲得萬元的利潤,否則將虧損萬元.該工廠每月需支付給每名維修工人萬元的工資.

(1)若每臺(tái)機(jī)器在當(dāng)月不出現(xiàn)故障或出現(xiàn)故障時(shí)有工人進(jìn)行維修,則稱工廠能正常運(yùn)行.若該廠只有名維修工人,求工廠每月能正常運(yùn)行的概率;

(2)已知該廠現(xiàn)有名維修工人.

(。┯浽搹S每月獲利為萬元,求的分布列與數(shù)學(xué)期望;

(ⅱ)以工廠每月獲利的數(shù)學(xué)期望為決策依據(jù),試問該廠是否應(yīng)再招聘名維修工人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,側(cè)棱底面,點(diǎn)的中點(diǎn),作,交于點(diǎn).

1)求證:平面

2)求證:;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的個(gè)數(shù)是(

①一組數(shù)據(jù)的標(biāo)準(zhǔn)差越大,則說明這組數(shù)據(jù)越集中;

②曲線與曲線的焦距相等;

③在頻率分布直方圖中,估計(jì)的中位數(shù)左邊和右邊的直方圖的面積相等;

④已知橢圓,過點(diǎn)作直線,當(dāng)直線斜率為時(shí),M剛好是直線被橢圓截得的弦AB的中點(diǎn).

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與雙曲線有公共的焦點(diǎn),的一條漸近線與以的長軸為直徑的圓相交于兩點(diǎn),若恰好將線段三等分,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究高中學(xué)生對(duì)鄉(xiāng)村音樂的態(tài)度(喜歡和不喜歡兩種態(tài)度)與性別的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=8.01,附表如下:

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

參照附表,得到的正確的結(jié)論是( 。

A. 有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂與性別有關(guān)”

B. 有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂與性別無關(guān)”

C. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂與性別有關(guān)”

D. 在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)時(shí)取得極值,求實(shí)數(shù)的值;

2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的方程為

(1)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求曲線的極坐標(biāo)方程和直線的極坐標(biāo)方程;

(2)在(1)的條件下,直線的極坐標(biāo)方程為,設(shè)曲線與直線的交于點(diǎn)和點(diǎn),曲線與直線的交于點(diǎn)和點(diǎn),求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案