已知函數(shù)f(x)=Asin(ωx+Φ)(A>0,ω>0,|x|<π),在一周期內,當x=
π
12
時,y取得最大值3,當x=
12
時,y取得最小值-3,
求(1)函數(shù)的解析式.
(2)求出函數(shù)f(x)的單調遞增區(qū)間與對稱軸方程,對稱中心坐標;
(3)當x∈[-
π
12
π
12
]時,求函數(shù)f(x)的值域.
分析:(1)由題干得出A,同一周期內兩個最值點的橫坐標之差的絕對值是半個T,從而得出ω,代入最高點坐標令ωx+Φ=
π
2
求出φ,得函數(shù)的解析式;
(2)由(1)知:ω=2,φ=
π
3
,把2x+
π
3
看作X分別代入正弦函數(shù)的單調遞增區(qū)間、對稱軸方程、對稱中心坐標分別求出x得函數(shù)f(x)的單調遞增區(qū)間、對稱軸方程、對稱中心坐標;
(3)由x的范圍得2x+
π
3
的范圍,由正弦函數(shù)的圖象得sin(2x+
π
3
)的范圍,由不等式得3sin(2x+
π
3
)的范圍,即函數(shù)f(x)的值域.
解答:解:(1)由題設知,A=3,
T
2
=
12
-
π
12
=
π
2
,∴T=π,∴ω=2,
∴f(x)=3sin(2x+φ),∵3sin(2×
π
12
+φ)=3,∴sin(
π
6
+φ)=1,
π
6
+φ=
π
2
,∴φ=
π
3
,,∴f(x)=3sin(2x+
π
3
);
(2)由-
π
2
+2kπ≤2x+
π
3
π
2
+2kπ得-
12
+kπ≤x≤
π
12
+kπ,
∴函數(shù)f(x)的單調遞增區(qū)間為[-
12
+kπ,
π
12
+kπ](k∈Z),
由2x+
π
3
=
π
2
+kπ得x=
π
12
+
2

∴函數(shù)f(x)的對稱軸方程為x=
π
12
+
2
(k∈Z),
由2x+
π
3
=kπ得x=-
π
6
+
2
(k∈Z),
∴函數(shù)f(x)的對稱中心坐標為(-
π
6
+
2
,0)(k∈Z);
(3)∵x∈[-
π
12
,
π
12
],∴2x+
π
3
∈[
π
6
,
π
2
],
∴sin(2x+
π
3
)∈[
1
2
,1],∴3sin(2x+
π
3
)∈[
3
2
,3],
∴函數(shù)f(x)的值域為[
3
2
,3].
點評:求y=Asin(ωx+φ)的解析式,條件不管以何種方式給出,一般先求A,再求ω,最后求φ;求y=Asin(ωx+φ)的單調遞增區(qū)間、對稱軸方程、對稱中心坐標時,要把ωx+φ看作整體,分別代入正弦函數(shù)的單調遞增區(qū)間、對稱軸方程、對稱中心坐標分別求出x,這兒利用整體的思想;求y=Asin(ωx+φ)的值域時,從x的范圍由里向外擴,一直擴到
Asin(ωx+φ)的范圍,即函數(shù)f(x)的值域.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案