6.如圖,三棱柱ABC-A1B1C1中,AC⊥BC,AB⊥BB1,AC=BC=BB1,D為AB的中點(diǎn),且CD⊥DA1
(I)求證:BC1∥平面DCA1
(II)求證:平面ABC⊥平面ABB1A1
(III)求BC1與平面ABB1A1所成角的大小.

分析 (I)連接AC1與A1C交于點(diǎn)K,連接DK.根據(jù)三角形中位線定理,易得到DK∥BC1,再由線面平行的判定定理得到BC1∥平面DCA1
(II)由已知條件推導(dǎo)出CD⊥AB,CD⊥DA1,由此能證明平面ABC⊥平面ABB1A1
(III)由AC=BC,D為AB的中點(diǎn),取A1B1的中點(diǎn)E,又D為AB的中點(diǎn),得到DCC1E是平行四邊形,則∠EBC1即為BC1與平面ABB1A1所成角的二面角,解三角形即可求出答案.

解答 解:(I)證明:如圖一,連接AC1與A1C交于點(diǎn)K,連接DK.
在△ABC1中,D、K為中點(diǎn),∴DK∥BC1
又DK?平面DCA1,BC1?平面DCA1,
∴BC1∥平面DCA1


(II)證明:∵AC=BC,D為AB中點(diǎn),
∴CD⊥AB,又CD⊥DA1,
∴CD⊥面AA1B1B,
又∵CD?平面ABC,∴平面A1B1B⊥平面ABC.
(III)取A1B1的中點(diǎn)E,又D為AB的中點(diǎn),∴DE、BB1、CC1平行且相等,
∴DCC1E是平行四邊形,∴C1E、CD平行且相等.
又CD⊥平面ABB1A1,∴C1E⊥平面ABB1A1,∴∠EBC1即所求角,
由前面證明知CD⊥平面ABB1A1,∴CD⊥BB1,
又AB⊥BB1,AB∩CD=D,∴BB1⊥平面ABC,∴此三棱柱為直棱柱.
設(shè)AC=BC=BB1=2,∴$B{C_1}=2\sqrt{2}$,$E{C_1}=\sqrt{2}$,∠EBC1=30°.

點(diǎn)評 本題主要考查線面平行以及面面垂直的判斷,以及線面角的求解,根據(jù)線面平行和面面垂直的判定定理以及利用定義法求出線面角的平面角是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=ln2x,則f′(x)=( 。
A.$\frac{1}{4x}$B.$\frac{1}{2x}$C.$\frac{2}{x}$D.$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,已知三棱柱ABC-A1B1C1中,CA=CB,側(cè)面AA1B1B是菱形,且∠ABB1=60°.
(I)求證:AB⊥B1C;
(Ⅱ)若AB=B1C=2,BC=$\sqrt{2}$,求二面角B-AB1-C1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.投擲兩顆質(zhì)地均勻的骰子,則向上的點(diǎn)數(shù)之和為5的概率等于$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=(-2)x-x+1.當(dāng)x依次取前6個(gè)自然數(shù)時(shí),f(x)的函數(shù)值列是{-2,3,-10,13,-36,59}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知三棱錐P-ABC的頂點(diǎn)P在平面ABC內(nèi)的射影為點(diǎn)H,側(cè)棱PA=PB=PC,點(diǎn)O為三棱錐P-ABC的外接球O的球心,AB=8,AC=6,已知$\overrightarrow{AO}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$+$\frac{1}{{1+\sqrt{3}}}$$\overrightarrow{HP}$,且λ+μ=1,則球O的表面積為150π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在極坐標(biāo)系中,與圓ρ=4sinθ相切的一條直線的方程為( 。
A.ρcosθ=$\frac{1}{2}$B.ρcosθ=2C.ρ=4sin(θ+$\frac{π}{3}$)D.ρ=4sin(θ-$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,在三棱柱ABC-A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O為AC中點(diǎn),則直線A1C與平面A1AB所成角的正弦值為(  )
A.$\frac{3}{5}$B.$\frac{\sqrt{21}}{7}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,平行四邊形ABCD中,AB=1,AD=4,CE=$\frac{1}{3}$CB.CF=$\frac{2}{3}$CD,∠DAB=60°,求$\overrightarrow{AC}$•$\overrightarrow{FE}$的值.

查看答案和解析>>

同步練習(xí)冊答案