A. | $\frac{3}{5}$ | B. | $\frac{\sqrt{21}}{7}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 建立空間坐標系,求出平面A1AB的法向量,利用向量法結合線面角的定義進行求解即可.
解答 解:∵側面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O為AC中點,
∴OB⊥側面AA1C1C,
建立以O為坐標原點,OA,OB,OA1分別為x,y,z軸的空間直角坐標系如圖:
則OA=OC=1,OA1=$\sqrt{3}$,OB=1,
則A(1,0,0),B(0,1,0),A1(0,0,$\sqrt{3}$),C(-1,0,0),
設平面A1AB的法向量為$\overrightarrow{n}$=(x,y,z),
則$\overrightarrow{AB}$=(-1,1,0),$\overrightarrow{A{A}_{1}}$=(-1,0,$\sqrt{3}$),
由$\overrightarrow{n}$•$\overrightarrow{AB}$=-x+y=0,$\overrightarrow{n}$•$\overrightarrow{A{A}_{1}}$=-x+$\sqrt{3}$z=0,
令z=1,則x=y=$\sqrt{3}$,
即$\overrightarrow{n}$=($\sqrt{3}$,$\sqrt{3}$,1),
∵$\overrightarrow{{A}_{1}C}$=(-1,0,-$\sqrt{3}$),
∴sin<$\overrightarrow{{A}_{1}C}$,$\overrightarrow{n}$>=|cos<$\overrightarrow{{A}_{1}C}$,$\overrightarrow{n}$>|=|$\frac{\overrightarrow{{A}_{1}C}•\overrightarrow{n}}{|\overrightarrow{{A}_{1}C}||\overrightarrow{n}|}$|=|$\frac{-\sqrt{3}-\sqrt{3}}{\sqrt{3+3+1}•\sqrt{1+3}}$|=$\frac{2\sqrt{3}}{2\sqrt{7}}$=$\frac{\sqrt{21}}{7}$,
故選:B.
點評 本題主要考查線面角的求解,建立空間坐標系,求出平面的法向量,利用向量法是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 有最大值$\frac{1}{2}$ | B. | 有最大值$\frac{1}{4}$ | C. | 有最小值$\frac{1}{2}$ | D. | 有最小值$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -$\frac{5}{7}$ | C. | $\frac{5}{7}$ | D. | -1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com