10.點(diǎn)M(x,y,z)是空間直角坐標(biāo)系Oxyz中的一點(diǎn),則與點(diǎn)M關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是(-x,y,-z).

分析 先根據(jù)空間直角坐標(biāo)系對(duì)稱點(diǎn)的特征,點(diǎn)(x,y,z)關(guān)于y軸的對(duì)稱點(diǎn)的坐標(biāo)為只須將橫坐標(biāo)、豎坐標(biāo)變成原來(lái)的相反數(shù)即可,即可得對(duì)稱點(diǎn)的坐標(biāo).

解答 解:∵在空間直角坐標(biāo)系中,
點(diǎn)(x,y,z)關(guān)于z軸的對(duì)稱點(diǎn)的坐標(biāo)為:(-x,y,-z),
故答案為:(-x,y,-z)

點(diǎn)評(píng) 本小題主要考查空間直角坐標(biāo)系、空間直角坐標(biāo)系中點(diǎn)的坐標(biāo)特征等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.執(zhí)行圖中的程序,如果輸出的結(jié)果是4,那么輸入的只可能是( 。
A.-4B.2C.±2或者-4D.2或者-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=2sinx(x∈[-π,π])的圖象大致為    (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知拋物線C:y2=2px(p>0)的焦點(diǎn)F(1,0),O為坐標(biāo)原點(diǎn),A,B是拋物線C異于O的兩點(diǎn).
(1)求拋物線C的方程;
(2)若直線OA,OB的斜率之積為-$\frac{1}{3}$,求證:直線AB過(guò)x軸上一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(Ⅰ) 計(jì)算:2${\;}^{-lo{g}_{2}4}$-($\frac{8}{27}$)${\;}^{-\frac{2}{3}}$+lg$\frac{1}{100}$+($\sqrt{2}$-1)lg1+(lg5)2+lg2•lg50
(Ⅱ)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求$\frac{{x}^{2}+{x}^{-2}-2}{x+{x}^{-1}-3}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.荊州市某重點(diǎn)學(xué)校為了了解高一年級(jí)學(xué)生周末雙休日在家活動(dòng)情況,打算從高一年級(jí)1256名學(xué)生中抽取50名進(jìn)行抽查,若采用下面的方法選。合扔煤(jiǎn)單隨機(jī)抽樣從1256人中剔除6人,剩下1250人再按系統(tǒng)抽樣的方法進(jìn)行,則每人入選的機(jī)會(huì)( 。
A.不全相等B.均不相等C.都相等D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若函數(shù)y=x2+(2a-1)x+1在區(qū)間(2,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.[-$\frac{3}{2}$,+∞)B.(-∞,-$\frac{3}{2}$]C.[$\frac{3}{2}$,+∞)D.(-∞,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若不等式組$\left\{\begin{array}{l}{x-y≥0}\\{2x+y≤2}\\{y≥0}\\{x+y≤a}\end{array}\right.$表示的平面區(qū)域是一個(gè)三角形,則a的取值范圍是( 。
A.0<a≤1或a≥$\frac{4}{3}$B.0<a≤1C.0≤a<1或a>$\frac{4}{3}$D.0<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖所示,正四棱錐P-ABCD中,O為底面正方形的中心,側(cè)棱PA與底面ABCD所成的角的正切值為$\frac{\sqrt{6}}{2}$.
(1)求側(cè)面PAD與底面ABCD所成的二面角的大。
(2)若E是PB的中點(diǎn),求異面直線PD與AE所成角的正切值;
(3)問(wèn)在棱AD上是否存在一點(diǎn)F,使EF⊥側(cè)面PBC,若存在,試確定點(diǎn)F的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案