15.荊州市某重點(diǎn)學(xué)校為了了解高一年級學(xué)生周末雙休日在家活動(dòng)情況,打算從高一年級1256名學(xué)生中抽取50名進(jìn)行抽查,若采用下面的方法選取:先用簡單隨機(jī)抽樣從1256人中剔除6人,剩下1250人再按系統(tǒng)抽樣的方法進(jìn)行,則每人入選的機(jī)會(huì)( 。
A.不全相等B.均不相等C.都相等D.無法確定

分析 在系統(tǒng)抽樣中,若所給的總體個(gè)數(shù)不能被樣本容量整除,則要先剔除幾個(gè)個(gè)體,然后再分組,在剔除過程中,每個(gè)個(gè)體被剔除的概率相等,每個(gè)個(gè)體被抽到包括兩個(gè)過程,這兩個(gè)過程是相互獨(dú)立的.

解答 解:∵在系統(tǒng)抽樣中,若所給的總體個(gè)數(shù)不能被樣本容量整除,則要先剔除幾個(gè)個(gè)體,然后再分組,
在剔除過程中,每個(gè)個(gè)體被剔除的概率相等,
∴每個(gè)個(gè)體被抽到包括兩個(gè)過程,一是不被剔除,二是選中,這兩個(gè)過程是相互獨(dú)立的,
∴每人入選的概率P=$\frac{1250}{1256}×\frac{50}{1250}$=$\frac{50}{1256}$=$\frac{25}{628}$,
故選C.

點(diǎn)評 在系統(tǒng)抽樣過程中,為將整個(gè)的編號(hào)分段(即分成幾個(gè)部分),要確定分段的間隔,當(dāng)在系統(tǒng)抽樣過程中比值不是整數(shù)時(shí),通過從總體中刪除一些個(gè)體(用簡單隨機(jī)抽樣的方法).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若a1=3,a4=24,則S6=( 。
A.93B.189C.99D.195

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2$\sqrt{2}$sin(θ-$\frac{π}{4}$),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{3}t}\\{y=-1+\frac{\sqrt{2}}{4}t}\end{array}\right.$,直線l和圓C交于A,B兩點(diǎn),P是圓C上不同于A,B的任意一點(diǎn)
(1)求圓C的直角坐標(biāo)方程;
(2)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=loga(x-1)+4(a>0且a≠1)恒過定點(diǎn)P,若點(diǎn)P也在冪函數(shù)g(x)的圖象上,則g(3)=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.點(diǎn)M(x,y,z)是空間直角坐標(biāo)系Oxyz中的一點(diǎn),則與點(diǎn)M關(guān)于y軸對稱的點(diǎn)的坐標(biāo)是(-x,y,-z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=sin2x+2$\sqrt{3}$sinxcosx+3cos2x,x∈R.求:
(I)求函數(shù)f(x)的最小正周期;
(II)求函數(shù)f(x)在區(qū)間[-$\frac{π}{6},\frac{π}{3}$]上的值域.
(Ⅲ)描述如何由y=sinx的圖象變換得到函數(shù)f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{x+2}{x}$
(1)寫出函數(shù)f(x)的定義域和值域;
(2)證明函數(shù)f(x)在(0,+∞)為單調(diào)遞減函數(shù);并求f(x)在x∈[2,8]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(Ⅰ)若函數(shù)f(x)=$\sqrt{{x}^{2}-kx-k}$定義域?yàn)镽,求k的取值范圍;
(Ⅱ)解關(guān)于x的不等式(x-a)(x+a-1)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,a2為整數(shù),且a3∈[3,5].
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{{a_n}{a_{n+2}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案