10.心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如表:(單位:人)
幾何題代數(shù)題總計(jì)
男同學(xué)22830
女同學(xué)81220
總計(jì)302050
(Ⅰ)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(Ⅱ)經(jīng)過(guò)多次測(cè)試后,甲每次解答一道幾何題所用的時(shí)間在5-7分鐘,乙每次解答一道幾何題所用的時(shí)間在6-8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
(Ⅲ)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行全程研究,記甲、乙兩女生被抽到的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
附表及公式:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (1)計(jì)算K2,對(duì)照附表做結(jié)論;
(2)作出甲,乙兩人解答時(shí)間的平面區(qū)域,找出乙比甲早做完對(duì)于的區(qū)域,則區(qū)域面積的比值即為所求概率;
(3)使用組合數(shù)公式和古典概型的概率計(jì)算公式分別計(jì)算X取不同值時(shí)的概率,得到X的分布列,求出數(shù)學(xué)期望.

解答 解:(1)由表中數(shù)據(jù)得K2的觀測(cè)值K2=$\frac{50(22×12-8×8)^{2}}{30×20×30×20}$=$\frac{50}{9}≈5.556$>5.024.
所以根據(jù)統(tǒng)計(jì)有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān).
(2)設(shè)甲、乙解答一道幾何題的時(shí)間分別為x,y分鐘,
則基本事件滿足的區(qū)域?yàn)?\left\{\begin{array}{l}{5≤x≤7}\\{6≤y≤8}\end{array}\right.$(如圖所示).

設(shè)事件A為“乙比甲先做完此道題”
則滿足的區(qū)域?yàn)閤>y.
∴P(A)=$\frac{\frac{1}{2}×1×1}{2×2}$=$\frac{1}{8}$
即乙比甲先解答完的概率為$\frac{1}{8}$.
(3)在選擇做幾何題的8名女生中任意抽取兩人,抽取方法有${C}_{8}^{2}$=28 種,
其中甲、乙兩人都不被被抽到有${C}_{6}^{2}$=15種;恰有一人被抽到有${C}_{2}^{1}$•${C}_{6}^{1}$=12種;兩人都被抽到有${C}_{2}^{2}$=1種.
X可能取值為0,1,2,
P(X=0)=$\frac{15}{28}$,P(X=1)=$\frac{12}{28}=\frac{3}{7}$,P(X=2)=$\frac{1}{28}$.
X的分布列為:

X012
P$\frac{15}{28}$$\frac{3}{7}$$\frac{1}{28}$
∴E(X)=0×$\frac{15}{28}$+1×$\frac{3}{7}$+2×$\frac{1}{28}$=$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)的統(tǒng)計(jì)思想,幾何概型的概率計(jì)算,離散性隨機(jī)變量的分布列和數(shù)學(xué)期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.將正整數(shù)1,2,3,4…排列成陣(如圖),在2處轉(zhuǎn)第一個(gè)彎,在3處轉(zhuǎn)第二個(gè)彎,在5處轉(zhuǎn)第三個(gè)彎,…則第2016個(gè)轉(zhuǎn)彎處的數(shù)為( 。
A.1006010B.1006110C.1017073D.1017072

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,氣象部門預(yù)報(bào),在海面上生成了一股較強(qiáng)臺(tái)風(fēng),在據(jù)臺(tái)風(fēng)中心60千米的圓形區(qū)域內(nèi)將受到嚴(yán)重破壞,臺(tái)風(fēng)中心這個(gè)從海岸M點(diǎn)登陸,并以72千米/小時(shí)的速度沿北偏西60°的方向移動(dòng),已知M點(diǎn)位于A城的南偏東15°方向,距A城$61\sqrt{2}$千米;M點(diǎn)位于B城的正東方向,距B城$60\sqrt{3}$千米,假設(shè)臺(tái)風(fēng)在移動(dòng)的過(guò)程中,其風(fēng)力和方向保持不變,請(qǐng)回答下列問(wèn)題:
(1)A城和B城是否會(huì)受到此次臺(tái)風(fēng)的侵襲?并說(shuō)明理由;
(2)若受到此次臺(tái)風(fēng)的侵襲,改城受到臺(tái)風(fēng)侵襲的持續(xù)時(shí)間有多少小時(shí)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.100件產(chǎn)品中有3件次品,不放回地抽取2次,每次抽1件.已知第1次抽出的是次品,則第2次抽出正品的概率是$\frac{97}{99}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.2016年春晚過(guò)后,為了研究演員上春晚次數(shù)與受關(guān)注度的關(guān)系,某網(wǎng)站對(duì)其中一位經(jīng)常上春晚的演員上春晚次數(shù)與受關(guān)注度進(jìn)行了統(tǒng)計(jì),得到如下數(shù)據(jù):
上春晚次數(shù)x(單位:次)246810
粉絲數(shù)量y(單位:萬(wàn)人)1525507090
(Ⅰ)若該演員的粉絲數(shù)量y與上春晚次數(shù)x滿足線性回歸方程,試求回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(Ⅱ)根據(jù)以上數(shù)據(jù)分析,估計(jì)該演員上春晚12次時(shí)的粉絲數(shù)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某班主任對(duì)班級(jí)51名同學(xué)進(jìn)行了作業(yè)量多少的調(diào)查,結(jié)合數(shù)據(jù)建立了一個(gè)2×2列聯(lián)表:
認(rèn)為作業(yè)多認(rèn)為作業(yè)不多總計(jì)
喜歡玩電腦游戲181230
不喜歡玩電腦游戲51621
總計(jì)232851
(可能用到的公式:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}n_{+1}n_{+2}}$,可能用到的數(shù)據(jù):P(X2≥6.635)=0.01,P(X2≥3.841)=0.05)參照以上公式和數(shù)據(jù),得到的正確結(jié)論是( 。
A.有95%的把握認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)多少有關(guān)
B.有95%的把握認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)多少無(wú)關(guān)
C.有99%的把握認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)多少有關(guān)
D.有99%的把握認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)多少無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.從某種設(shè)備中隨機(jī)抽取5個(gè),獲得使用年限 xi(年)與所支出的修理費(fèi)用 yi(萬(wàn)元)的數(shù)據(jù)資料,算得
$\sum_{i=1}^{5}$xi=20,$\sum_{i=1}^{5}$yi=25,$\sum_{i=1}^{5}$xiyi=112.3,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=90
(1)求回歸方程$\widehat{y}$=bx+a;
(2)判斷變量 x與 y之間是正相關(guān)還是負(fù)相關(guān);
(3)估計(jì)使用年限為10年時(shí)維修費(fèi)用是多少.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-bx
其中$\overline{x}$,$\overline{y}$為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如圖,海上有A,B兩個(gè)小島相距10km,船O將保持觀望A島和B島所成的視角為60°,現(xiàn)從船O上派下一只小艇沿BO方向駛至C處進(jìn)行作業(yè),且OC=BO.設(shè)AC=10$\sqrt{3}$km,則OA2+OB2=200.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.現(xiàn)安排甲、乙、丙、丁、戊5名同學(xué)參加課外興趣活動(dòng),要求每人參加體育、音樂、美術(shù)、科技制作四項(xiàng)中的一項(xiàng),每項(xiàng)興趣活動(dòng)至少有一人參加,甲、乙不想?yún)⒓芋w育興趣活動(dòng),其他同學(xué)四項(xiàng)興趣活動(dòng)都愿意參加,則不同安排方案的種數(shù)是( 。
A.152種B.54種C.90種D.126種

查看答案和解析>>

同步練習(xí)冊(cè)答案