已知數(shù)列{an}中,a1=2,nan+1=(n+1)an+2,n∈N+,則a11=( 。
A、36B、38C、40D、42
考點:數(shù)列遞推式
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:在等式的兩邊同時除以n(n+1),得
an+1
n+1
-
an
n
=2(
1
n
-
1
n+1
),然后利用累加法求數(shù)列的通項公式即可.
解答: 解:因為nan+1=(n+1)an+2(n∈N*),
所以在等式的兩邊同時除以n(n+1),得
an+1
n+1
-
an
n
=2(
1
n
-
1
n+1
),
所以
a11
11
=
a1
1
+2[(
1
10
-
1
11
)+(
1
9
-
1
10
)+…+(1-
1
2
)]=
42
11

所以a11=42
故選D.
點評:本題主要考查利用累加法求數(shù)列的通項公式,以及利用裂項法求數(shù)列的和,要使熟練掌握這些變形技巧.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

矩陣A=
a-76
-2a
為不可逆矩陣,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
x2
4
-
y2
b2
=1(b>0)的一條漸進線方程為y=
6
2
x,F(xiàn)1,F(xiàn)2分別為雙曲線C的左右焦點,P為雙曲線C上的一點,滿足|PF1|:|PF2|=3:1,則|
PF1
+
PF2
|的值是( 。
A、4
B、2
6
C、2
10
D、
6
10
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某款手機的廣告宣傳費用x(單位萬元)與利潤y(單位萬元)的統(tǒng)計數(shù)據(jù)如下表:
廣告宣傳費用x6578
利潤y34263842
根據(jù)上表可得線性回歸方程
y
=
b
x+
a
中的
?
b
為9.4,據(jù)此模型預報廣告宣傳費用為10萬元時利潤為( 。
A、65.0萬元
B、67.9萬元
C、68.1萬元
D、68.9萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=xlnx-a有兩個零點,則實數(shù)a的取值范圍為( 。
A、[0,
1
e
]
B、(-
1
e
,
1
e
C、(0,
1
e
]
D、(-
1
e
,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(x,y)是雙曲線C:x2-y2=a(a>0)右支上動點,雙曲線C的過點P的切線分別交兩條漸近線于點A,B,則△OAB的面積是(  )
A、隨x的增大而增大
B、隨x的增大而減小
C、a2
D、a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線
x2
25
+
y2
9
=1與
x2
25-k
+
y2
9-k
=1(k<9)有相同的( 。
A、長軸B、準線C、焦點D、離心率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

請觀察以下三個式子:①1×3=
1×2×9
6
;②1×3+2×4=
2×3×11
6
;③1×3+2×4+3×5=
3×4×13
6

歸納出一般的結(jié)論,并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(a+1)lnx+ax2+1.
(1)當a=-
1
3
時,求f(x)的最大值;
(2)a≤-2時,判斷函數(shù)f(x)的單調(diào)性;
(3)若a≤-2,證明對任意x1,x2∈(0,+∞),均有|f(x1)-f(x2)|≥4|x1-x2|.

查看答案和解析>>

同步練習冊答案