精英家教網 > 高中數學 > 題目詳情
若函數f(x)=-x2+(2a-1)|x|有四個不同的單調區(qū)間,則實數a的取值范圍是
1
2
,+∞)
1
2
,+∞)
分析:先由函數f(x)=-x2+(2a-1)x變化得到f(x)=-x2+(2a-1)|x|的圖象,再將二次函數配方,找到其對稱軸,明確單調性,根據圖象再研究對稱軸的位置即可求解.
解答:解:f(x)=-x2+(2a-1)|x|可由函數f(x)=-x2+(2a-1)x變化得到:
第一步保留y軸右側的圖象,再作關于y軸對稱的圖象即可,如圖所示:
因為函數有四個不同的單調區(qū)間,
所以f(x)=-x2+(2a-1)x的對稱軸在y軸的右側,使y軸右側有兩個單調區(qū)間,對稱后有四個單調區(qū)間.
所以
2a-1
2
>0,即a>
1
2

故答案為:(
1
2
,+∞).
點評:本題考查的知識點是二次函數的性質,其中熟練掌握二次函數的圖象和性質是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)(x∈R)為奇函數,且存在反函數f-1(x)(與f(x)不同),F(x)=
2f(x)-2f-1(x)
2f(x)+2f-1(x)
,則下列關于函數F(x)的奇偶性的說法中正確的是( 。
A、F(x)是奇函數非偶函數
B、F(x)是偶函數非奇函數
C、F(x)既是奇函數又是偶函數
D、F(x)既非奇函數又非偶函數

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

同步練習冊答案