若[-1,1]⊆{x||x2-tx+t|≤1},則實數(shù)t的取值范圍是( 。
A、[-1,0]
B、[2-2
2
,0]
C、(-∞,-2]
D、[2-2
2
,2+2
2
]
考點:集合的包含關系判斷及應用
專題:計算題,函數(shù)的性質(zhì)及應用,集合
分析:令y=x2-tx+t,由題意,將集合的包含關系可化為求函數(shù)的最值的范圍.
解答: 解:令y=x2-tx+t,
①若t=0,
則{x||x2≤1}=[-1,1],成立,
②若t>0,
則ymax=(-1)2-t(-1)+t=2t+1≤1,即t≤0,不成立;
③若t<0,
則ymax=(1)2-t+t=1≤1,成立,
ymin=(
t
2
2-t•
t
2
+t≥-1,
即t2-4t-4≤0,
解得,2-2
2
≤t≤2+2
2

則2-2
2
≤t<0,
綜上所述,
2-2
2
≤t≤0.
故選B.
點評:本題考查了集合的包含關系的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

角α的終邊上一點P坐標為(5a,-12a)(a≠0),則sinα的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
2
2
3
,M為橢圓上一點,P(0,a),求PM的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,點P到兩點(0,
3
),(0,-
3
)的距離之和等于4,設點P的軌跡為C,直線y=kx+1與C交于點A、B.
(1)寫出C的方程;
(2)若
OA
OB
>-1,求k的取值范圍;
(3)若點A在第一象限,證明:當k>0時,恒有|
OA
|>|
OB
|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“函數(shù)y=f(x)的導函數(shù)為f′(x)=ex+
k2
ex
-
1
k
(其中e為自然對數(shù)的底數(shù),k為實數(shù)),且f(x)在R上不是單調(diào)函數(shù)”是真命題,則實數(shù)k的取值范圍是( 。
A、(-∞,-
2
2
B、(-
2
2
,0)
C、(0,
2
2
D、(
2
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線L1:2x-y-4=0與拋物線C1:y2=4x交于A、B兩點,又C2是頂點在原點,對稱軸為x軸,且開口向左的拋物線,L2是過C2的焦點F的直線,并且與C2交于C、D兩點,若ABCD成平行四邊形,求L1與L2的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在區(qū)間[-1,1]上的偶函數(shù),當x∈[-1,0]時,f(x)=g(2-x),且當x∈[2,3]時,g(x)=2a(x-2)-4(x-2)3
(1)求f(x)的表達式.
(2)是否存在正實數(shù)a(a>6),使函數(shù)f(x)圖象的最高點在直線y=12上?若存在,求出正實數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求關于x的方程x2-(3n+2)x+3n2-74=0(n∈Z)的所有實根之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2+ax+3,當f(x)在[2,3]上有最小值為1,求a的取值范圍.

查看答案和解析>>

同步練習冊答案