【題目】(文科)設函數(shù)f(x)=x2﹣2ax﹣8a2(a>0),記不等式f(x)≤0的解集為A.
(1)當a=1時,求集合A;
(2)若(﹣1,1)A,求實數(shù)a的取值范圍.
【答案】
(1)解:當a=1時,f(x)=x2﹣2x﹣8,
由不等式x2﹣2x﹣8≤0,化為(x﹣4)(x+2)≤0,
解得﹣2≤x≤4,
∴集合A={x|﹣2≤x≤4}
(2)解:∵x2﹣2ax﹣8a2≤0,
∴(x﹣4a)(x+2a)≤0,
又∵a>0,∴﹣2a≤x≤4a,∴A=[﹣2a,4a].
又∵(﹣1,1)A,
∴ ,解得 ,
∴實數(shù)a的取值范圍是 .
【解析】(1)當a=1時,f(x)=x2﹣2x﹣8,不等式x2﹣2x﹣8≤0,化為(x﹣4)(x+2)≤0,解出即可.(2)由x2﹣2ax﹣8a2≤0,可得(x﹣4a)(x+2a)≤0,由于a>0,可得﹣2a≤x≤4a,即A=[﹣2a,4a].由于(﹣1,1)A,可得 ,解得即可.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線.
(1)若直線與圓交于不同的兩點,當時,求的值;
(2)若是直線上的動點,過作圓的兩條切線,切點為,探究:直線是否過定點?若過定點則求出該定點,若不存在則說明理由;
(3)若為圓的兩條相互垂直的弦,垂足為,求四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 為的中點,如圖 2.
(1)求證: 平面;
(2)求證: 平面;
(3)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知右焦點為F(c,0)的橢圓M: =1(a>b>0)過點 ,且橢圓M關于直線x=c對稱的圖形過坐標原點.
(1)求橢圓M的方程;
(2)過點(4,0)且不垂直于y軸的直線與橢圓M交于P,Q兩點,點Q關于x軸的對稱原點為E,證明:直線PE與x軸的交點為F.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù)滿足,且.當時, .
(1)求在上的解析式;
(2)證明在上是減函數(shù);
(3)當取何值時,方程在上有解.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.
(1)當a=1時,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某租賃公司擁有汽車100輛.當每輛車的月租金為元時,可全部租出.當每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.若使租賃公司的月收益最大,每輛車的月租金應該定為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()
(1)若,用“五點法”在給定的坐標系中,畫出函數(shù)在[0,π]上的圖象.
(2)若偶函數(shù),求
(3)在(2)的前提下,將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標變?yōu)樵瓉淼?/span>4倍,縱坐標不變,得到函數(shù)的圖象,求在的單調遞減區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com