6.已知tanα=-2,則sinαcosα-cos2α的值是(  )
A.$\frac{3}{5}$B.$\frac{5}{3}$C.-$\frac{5}{3}$D.-$\frac{3}{5}$

分析 由條件利用同角三角函數(shù)的基本關(guān)系,求得sinαcosα-cos2α的值.

解答 解:∵tanα=-2,則sinαcosα-cos2α=$\frac{sinαcosα{-cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{tanα-1}{{tan}^{2}α+1}$=$\frac{-2-1}{4+1}$=-$\frac{3}{5}$,
故選:D.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知$f(x)={cos^4}x+2\sqrt{3}sinxcosx-{sin^4}x$.
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)增區(qū)間;
(3)若$x∈[{0,\frac{π}{2}}]$,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知:$A_n^4=40C_n^5$,設$f(x)={(x-\frac{1}{{\root{3}{x}}})^n}$.
(1)求n的值;
(2)寫出f(x)的展開式中所有的有理項;
(3)求f(x)的展開式中系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知f(α)=$\frac{{{{cos}^2}(\frac{3π}{2}-α)sin(\frac{π}{2}+α)tan(-π+α)}}{sin(-π+α)tan(-α+3π)}$.
(1)化簡f(α);
(2)若f(α)=$\frac{1}{8}$,且$\frac{π}{4}$<α<$\frac{π}{2}$,求cosα-sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.三棱柱ABC-A1B1C1中,A1-AC-B是直二面角,AA1=A1C=AC=2,AB=BC,且∠ABC=90°,O為AC的中點.
(Ⅰ)若E是BC1的中點,求證:OE∥平面A1AB;
(Ⅱ)求二面角A-A1B-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設f(x)=x2-2x-4lnx,則函數(shù)f(x)單調(diào)遞增區(qū)間是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若命題p:?x∈R,x2>1,則該命題的否定是?x∈R,x2≤1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.函數(shù)y=Asin(ωx+φ)+c(A>0,ω>0,|φ|<$\frac{π}{2}$)在同一周期中最高點坐標為(2,2),最低點的坐標為(8,-4).
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設Sn為等差數(shù)列{an}的前n項和,已知a1+a3+a11=6,則S9=18.

查看答案和解析>>

同步練習冊答案