14分)已知函數(shù)

(1)當(dāng)時,求函數(shù)的最值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)說明是否存在實(shí)數(shù)使的圖象與無公共點(diǎn).

 

【答案】

解:(1)函數(shù)的定義域是(1,+

當(dāng)a=1時,,所以為減函數(shù)

為增函數(shù),所以函數(shù)的最小值為.

(2)

時,則>0在(1,)恒成立,

所以的增區(qū)間(1,).

,故當(dāng),

當(dāng)時,

所以a>0時的減區(qū)間為(),的增區(qū)間為[.

(3)時,由(Ⅰ)知在(1,+)的最小值為,

在[1,+)上單調(diào)遞減,

所以,則 

因此存在實(shí)數(shù)使的最小值大于

故存在實(shí)數(shù)使y=的圖象與y=無公共點(diǎn).

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011屆廣東省高三高考全真模擬試卷數(shù)學(xué)理卷一 題型:解答題

(本小題滿分14分)
已知函數(shù)為自然對數(shù)的底數(shù)).
(1)求函數(shù)的最小值;
(2)若,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆北京市西城區(qū)高三二?荚?yán)砜茢?shù)學(xué) 題型:解答題

((本小題滿分14分)
已知函數(shù),其中為自然對數(shù)的底數(shù).
(Ⅰ)當(dāng)時,求曲線處的切線與坐標(biāo)軸圍成的面積;
(Ⅱ)若函數(shù)存在一個極大值點(diǎn)和一個極小值點(diǎn),且極大值與極小值的積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省漳州市四地七校高三第四次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知函數(shù)同時滿足如下三個條件:①定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012082415383322765779/SYS201208241539060791241948_ST.files/image002.png">;②是偶函數(shù);③時,,其中.

(Ⅰ)求上的解析式,并求出函數(shù)的最大值;

(Ⅱ)當(dāng),時,函數(shù),若的圖象恒在直線上方,求實(shí)數(shù)的取值范圍(其中為自然對數(shù)的底數(shù), ).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省高三模擬考試數(shù)學(xué)(理科)試題 題型:解答題

(本小題滿分14分)

已知函數(shù)

(Ⅰ)若的極值點(diǎn),求實(shí)數(shù)的值;

(Ⅱ)若上為增函數(shù),求實(shí)數(shù)的取值范圍;

(Ⅲ)若時,方程有實(shí)根,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省高二期末測試數(shù)學(xué)(理) 題型:解答題

(本題滿分14分)已知函數(shù),實(shí)數(shù),為常數(shù)).

(Ⅰ)若,求函數(shù)的極值;

(Ⅱ)若,討論函數(shù)的單調(diào)性.

 

 

查看答案和解析>>

同步練習(xí)冊答案