【題目】設(shè){an}是首項(xiàng)為a,公差為d的等差數(shù)列(d≠0),Sn是其前n項(xiàng)和.記bn= ,n∈N* , 其中c為實(shí)數(shù).
(1)若c=0,且b1 , b2 , b4成等比數(shù)列,證明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差數(shù)列,證明:c=0.
【答案】
(1)
證明:若c=0,則an=a1+(n﹣1)d, , .
當(dāng)b1,b2,b4成等比數(shù)列時(shí),則 ,
即: ,得:d2=2ad,又d≠0,故d=2a.
因此: , , .
故: (k,n∈N*).
(2)
證明:
=
= . ①
若{bn}是等差數(shù)列,則{bn}的通項(xiàng)公式是bn=An+B型.
觀察①式后一項(xiàng),分子冪低于分母冪,
故有: ,即 ,而 ,
故c=0.
經(jīng)檢驗(yàn),當(dāng)c=0時(shí){bn}是等差數(shù)列.
【解析】(1)寫出等差數(shù)列的通項(xiàng)公式,前n項(xiàng)和公式,由b1 , b2 , b4成等比數(shù)列得到首項(xiàng)和公差的關(guān)系,代入前n項(xiàng)和公式得到Sn , 在前n項(xiàng)和公式中取n=nk可證結(jié)論;
(2)把Sn代入 中整理得到bn= ,由等差數(shù)列的通項(xiàng)公式是an=An+B的形式,說明 ,由此可得到c=0.
【考點(diǎn)精析】本題主要考查了等差數(shù)列的前n項(xiàng)和公式和等比關(guān)系的確定的相關(guān)知識(shí)點(diǎn),需要掌握前n項(xiàng)和公式:;等比數(shù)列可以通過定義法、中項(xiàng)法、通項(xiàng)公式法、前n項(xiàng)和法進(jìn)行判斷才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面, 垂直于和,為棱上的點(diǎn),,.
(1)若為棱的中點(diǎn),求證://平面;
(2)當(dāng)時(shí),求平面與平面所成的銳二面角的余弦值;
(3)在第(2)問條件下,設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),與平面所成的角為,求當(dāng)取最大值時(shí)點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉行“中學(xué)生詩(shī)詞大賽”,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績(jī)大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.則獲得復(fù)賽資格的人數(shù)為()
A.640B.520C.280D.240
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù).當(dāng)x>0時(shí),f(x)=x2﹣4x,則不等式f(x)>x 的解集用區(qū)間表示為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線與x軸交于不同的兩點(diǎn)A,B,曲線Γ與y軸交于點(diǎn)C.
(1)是否存在以AB為直徑的圓過點(diǎn)C?若存在,求出該圓的方程;若不存在,請(qǐng)說明理由;
(2)求證:過A,B,C三點(diǎn)的圓過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校研究性學(xué)習(xí)小組調(diào)查學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)成績(jī)的影響,部分統(tǒng)計(jì)數(shù)據(jù)如下表:
使用智能手機(jī) | 不使用智能手機(jī) | 總計(jì) | |
學(xué)習(xí)成績(jī)優(yōu)秀 | 4 | 8 | 12 |
學(xué)習(xí)成績(jī)不優(yōu)秀 | 16 | 2 | 18 |
總計(jì) | 20 | 10 | 30 |
(Ⅰ)根據(jù)以上列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)成績(jī)有影響?
(Ⅱ)從學(xué)習(xí)成績(jī)優(yōu)秀的12名同學(xué)中,隨機(jī)抽取2名同學(xué),求抽到不使用智能手機(jī)的人數(shù)的分布列及數(shù)學(xué)期望.
參考公式:,其中
參考數(shù)據(jù):
0.05 | 0,。025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)設(shè)0<x<,求函數(shù)y=x(3﹣2x)的最大值;
(2)解關(guān)于x的不等式x2-(a+1)x+a<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某小區(qū)抽取100戶居民進(jìn)行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50至350度之間,頻率分布直方圖如圖所示:
(Ⅰ)直方圖中x的值為;
(Ⅱ)在這些用戶中,用電量落在區(qū)間[100,250)內(nèi)的戶數(shù)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com