【題目】已知函數(shù)f (x)=
(1)求a的值;
(2)求f( f (2) )的值;
(3)若f(m)=3,求m的值.
【答案】(1) -2.(2) -2.(3)3
【解析】
試題分析:(1)由函數(shù)定義可知一個(gè)自變量值對應(yīng)一個(gè)函數(shù)值,因此可得到1+a=12-2×1;(2)分段函數(shù)求值時(shí)要注意自變量的值在哪一個(gè)自變量區(qū)間內(nèi),需代入相應(yīng)的函數(shù)解析式;(3)由函數(shù)值求自變量的值時(shí)需令每一個(gè)式子都等于函數(shù)值去求x的值
試題解析:(1)由函數(shù)定義,得當(dāng)x=1時(shí),應(yīng)有1+a=12-2×1,即a=-2.
(2)由(1),得f(x)=因?yàn)?>1,所以f(2)=22-2×2=0,
因?yàn)?<1,所以f(f(2))=f(0)=0-2=-2.
(3)當(dāng)m≤1時(shí),f(m)=m-2,此時(shí)m-2=3得m=5,與m≤1矛盾,舍去;
當(dāng)m≥1時(shí),f(m)=m2-2m,此時(shí)m2-2m=3得m=-1或m=3.
又因?yàn)閙≥1,所以m=3.
綜上可知滿足題意的m的值為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)多面體,共由四個(gè)面圍成,每一個(gè)面都是三角形,則這個(gè)幾何體為( )
A. 四棱柱 B. 四棱錐
C. 三棱柱 D. 三棱錐
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銅錢:古代銅質(zhì)輔幣,俗稱銅錢,是指秦漢以后的各類方孔圓錢,方孔圓錢的鑄期一直延伸到清末民國初年.請問銅錢形成的幾何體的三視圖中不可能有下列那種圖形( 。
A. 正方形 B. 圓 C. 三角形 D. 矩形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中秋節(jié)到了,糕點(diǎn)店的售貨員很忙,請?jiān)O(shè)計(jì)一個(gè)程序,幫助售貨員算賬,已知豆沙餡的月餅每千克25元,蛋黃餡的月餅每千克35元,蓮蓉餡的月餅每千克30元,那么依次購買這三種月餅a、b、c千克,應(yīng)收多少錢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】文科做:數(shù)列中,且滿足
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè),求;
(III)設(shè)=,是否存在最大的整數(shù),使得對任意,均有成立?若存在,求出的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種新產(chǎn)品投放市場的100天中,前40天價(jià)格呈直線上升,而后60天其價(jià)格呈直線下降,現(xiàn)統(tǒng)計(jì)出其中4天的價(jià)格如下表:
時(shí)間 | 第4天 | 第32天 | 第60天 | 第90天 |
價(jià)格(千元) | 23 | 30 | 22 | 7 |
(1)寫出價(jià)格關(guān)于時(shí)間的函數(shù)關(guān)系式;(表示投放市場的第天);
(2)銷售量與時(shí)間的函數(shù)關(guān)系:,則該產(chǎn)品投放市場第幾天銷售額最高?最高為多少千元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>,若存在閉區(qū)間,使得函數(shù)滿足:①在
上是單調(diào)函數(shù);②在 上的值域是,則稱區(qū)間是函數(shù) 的“和諧區(qū)間”,
下列結(jié)論錯(cuò)誤的是( )
A.函數(shù) 存在 “和諧區(qū)間”
B.函數(shù) 存在 “和諧區(qū)間”
C.函數(shù) 不存在 “和諧區(qū)間”
D.函數(shù) 存在 “和諧區(qū)間”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A.“x>5”是“x>3”的必要不充分條件
B.命題“對x∈R,恒有x2+1>0”的否定是“x∈R,使得x2+1≤0”
C.m∈R,使函數(shù)f(x)=x2+mx(x∈R)是奇函數(shù)
D.設(shè)p,q是簡單命題,若p∨q是真命題,則p∧q也是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),圓:,過點(diǎn)的動(dòng)直線與圓相交于、兩點(diǎn),線段的中點(diǎn)為,且在圓上.
(1)若直線()經(jīng)過點(diǎn),求的最大值;
(2)求圓的方程;
(3)若過點(diǎn)的直線與圓相交于,兩點(diǎn),線段的中點(diǎn)為.與:的交點(diǎn)為,求證:為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com