【題目】已知點(diǎn),圓:,過點(diǎn)的動(dòng)直線與圓相交于、兩點(diǎn),線段的中點(diǎn)為,且在圓上.
(1)若直線()經(jīng)過點(diǎn),求的最大值;
(2)求圓的方程;
(3)若過點(diǎn)的直線與圓相交于,兩點(diǎn),線段的中點(diǎn)為.與:的交點(diǎn)為,求證:為定值.
【答案】(1);(2);(3)證明見解析.
【解析】
試題分析:(1)由,利用基本不等式,求得,即可求得的最大值;(2)由圓的圓心為,半徑為,設(shè)設(shè),得出,,利用由題設(shè)知,即可求解圓的方程;(3)設(shè)直線的方程為(),直線方程與圓的方程聯(lián)立,利用根與系數(shù)的關(guān)系,得出點(diǎn)的坐標(biāo),同理得出的坐標(biāo),即可求解為定值.
試題解析:(1)∵,∴,即,∴.
(2)圓的圓心為,半徑為5,
設(shè),則,,
由題設(shè)知,∴,即,
∴的方程是.
(3)設(shè)直線的方程為().
由得,
又直線與垂直,
由得,
∴
(定值).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在6和768之間插入6個(gè)數(shù),使它們組成共8項(xiàng)的等比數(shù)列,則這個(gè)等比數(shù)列的第6項(xiàng)是____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某程序框圖如圖所示,該程序運(yùn)行后輸出的n值是8,則從集合中所有滿足條件的S0值為( )
A.0 B.1 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4一4:坐標(biāo)系與參數(shù)方程
已知在直角坐標(biāo)系x0y中,曲線:(為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn))為極點(diǎn),x軸的正半軸為極軸,取相同單位長度的極坐標(biāo)系中,曲線:.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)曲線上恰好存在三個(gè)不同的點(diǎn)到曲線的距離相等,分別求這三個(gè)點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于用斜二測(cè)畫法畫直觀圖的說法中,正確的是( )
A.水平放置的正方形的直觀圖不可能是平行四邊形
B.平行四邊形的直觀圖仍是平行四邊形
C.兩條相交直線的直觀圖可能是平行直線
D.兩條垂直的直線的直觀圖仍互相垂直
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銷售甲、乙兩種商品所得利潤分別是(單位:萬元)和(單位:萬元),它們與投入資金(單位:萬元)的關(guān)系有經(jīng)驗(yàn)公式,. 今將萬元資金投入經(jīng)營甲、乙兩種商品,其中對(duì)甲種商品投資(單位:萬元),
(1)試建立總利潤(單位:萬元)關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)對(duì)甲種商品投資(單位:萬元)為多少時(shí)?總利潤(單位:萬元)值最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解決某個(gè)問題的算法如下:
第一步,給定一個(gè)實(shí)數(shù)n(n≥2).
第二步,判斷n是否是2,若n=2,則n滿足條件;若n>2,則執(zhí)行第三步.
第三步,依次從2到n-1檢驗(yàn)?zāi)懿荒苷?/span>n,若都不能整除n,則n滿足條件.
則滿足上述條件的實(shí)數(shù)n是( )
A.質(zhì)數(shù) B.奇數(shù)
C.偶數(shù) D.約數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的個(gè)數(shù)是( )
①若直線l與平面α內(nèi)的一條直線垂直,則l⊥α;
②若直線l與平面α內(nèi)的兩條直線垂直,則l⊥α
③若直線l與平面α內(nèi)的兩條相交直線垂直,則l⊥α;
④若直線l與平面α內(nèi)的任意一條直線垂直,則l⊥α.
A.4
B.2
C.3
D.1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com