4.設(shè)k=${∫}_{0}^{π}$(sinx-cosx)dx,若(1-kx)8=a0+a1x+a2x2+…+a8x8,則a1+a2+a3+…+a8=0.

分析 利用微積分基本定理求出k的值,通過對二項(xiàng)式中的x賦值求出常數(shù)項(xiàng),a0+a1+a2+a3+…+a8,即可得出結(jié)論.

解答 解:k=${∫}_{0}^{π}$(sinx-cosx)dx=(-cosx-sinx)|${\;}_{0}^{π}$=2,
令x=0得,a0=1,
令x=1得,a0+a1+a2+a3+…+a8=1,
∴a1+a2+a3+…+a8=0.
故答案為:0

點(diǎn)評 求二項(xiàng)展開式的系數(shù)和問題常用的方法是通過觀察給二項(xiàng)式中x的賦值即賦值求系數(shù)和.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.集合A={x|$\frac{1}{2}$<2x≤4},則 A∩Z={0,1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1焦點(diǎn)在x軸上,其中a=6,e=$\frac{1}{3}$,求橢圓的標(biāo)準(zhǔn)方程;
(2)已知橢圓C的長軸長為10,焦距為6,求橢圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$\overrightarrow{a}$=(x,0),$\overrightarrow$=(1,y),且($\overrightarrow{a}$+$\sqrt{3}$$\overrightarrow$)⊥($\overrightarrow{a}$-$\sqrt{3}$$\overrightarrow$).
(1)求點(diǎn)P(x,y)的軌跡C的方程;
(2)若直線y=kx+m(k≠0)與曲線C交于A,B兩點(diǎn),D(0,-1),且|AD|=|DB|,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知集合A={-1,1},B={x|ax+1=0},若B⊆A,求實(shí)數(shù)a所有可能取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知程序框圖如圖,若a=0.62,b=30.5,c=log0.55,則輸出的數(shù)是( 。
A.aB.bC.cD.d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)=2sin(2x+\frac{π}{4})$,x∈R
(1)寫出函數(shù)f(x)的最小正周期、對稱軸方程及單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間$[{0,\frac{π}{2}}]$上的最值及取最值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)f(x)=ax2+bx+3a+b的圖象關(guān)于y軸對稱,且其定義域?yàn)閇a-1,2a](a,b∈R),則函數(shù)f(x)的單調(diào)減區(qū)間為[$-\frac{2}{3}$,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若“0≤x≤1”是“(x-a)[x-(a+2)]≤0”的充分不必要條件,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,0]∪[1,+∞)B.[-1,0]C.(-1,0)D.(-∞,-1)∪(0,+∞)

查看答案和解析>>

同步練習(xí)冊答案