【題目】在數(shù)列{an}中,a1=1, = + (n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=1+a (n∈N*),求數(shù)列{2nbn}的前n項(xiàng)和Sn .
【答案】
(1)解:∵ = + ,即 ﹣ = ,
又 = ,
∴{ }是以 為首項(xiàng),以 為公差的等差數(shù)列.
∴ = + (n﹣1)= ,
∴an= ﹣1.
(2)解:bn=1+a = = .
∴2nbn= ,
∴Sn= + + + +…+ ,①
∴ Sn= + + + +… ,②
① ﹣②得:
Sn= + + + +…+ ﹣
= ﹣
=8﹣ ﹣ =8﹣ .
∴Sn=16﹣ .
【解析】(1)移項(xiàng)得 ﹣ = ,故{ }是等差數(shù)列,求出此等差數(shù)列的通項(xiàng)公式即可得出an;(2)計(jì)算bn , 得出2nbn , 利用錯(cuò)位相減法求出Sn .
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)可以得到問題的答案,需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,∠ACB=90°,AC=BC=1,AA1=2,D是棱AA1的中點(diǎn).
(Ⅰ)求證:B1C1∥平面BCD;
(Ⅱ)求三棱錐B﹣C1CD的體積;
(Ⅲ)在線段BD上是否存在點(diǎn)Q,使得CQ⊥BC1?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,過點(diǎn)F的直線交拋物線于A,B兩點(diǎn),點(diǎn)A在l上的射影為A1 . 若|AB|=|A1B|,則直線AB的斜率為( )
A.±3
B.±2
C.±2
D.±
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2c﹣a=2bcosA.
(1)求角B的大小;
(2)若b=2 ,求a+c的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)min{m,n}表示m、n二者中較小的一個(gè),已知函數(shù)f(x)=x2+8x+14,g(x)=min{( )x﹣2 , log2(4x)}(x>0),若x1∈[﹣5,a](a≥﹣4),x2∈(0,+∞),使得f(x1)=g(x2)成立,則a的最大值為( )
A.﹣4
B.﹣3
C.﹣2
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】宋元時(shí)期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問題,松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等,如圖是源于其思想的一個(gè)程序框圖,若輸入的a=10,b=4,則輸出的n=( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的圓柱O1O2中,等腰梯形ABCD內(nèi)接于下底面圓O1 , AB∥CD,且AB為圓O1的直徑,EA和FC都是圓柱O1O2的母線,M為線段EF的中點(diǎn).
(1)求證:MO1∥平面BCF;
(2)已知BC=1,∠ABC=60°,且直線AF與平面ABC所成的角為30°,求平面MAB與平面EAD所成的角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的首項(xiàng)為a1 , 公差為d,其前n項(xiàng)和為Sn , 若直線y=a1x+m與圓x2+(y﹣1)2=1的兩個(gè)交點(diǎn)關(guān)于直線x+y﹣d=0對稱,則數(shù)列( )的前100項(xiàng)的和為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com